Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports
Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some...
Ausführliche Beschreibung
Autor*in: |
Ewer, Michael S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Clinical trial adverse event rates |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Cardio-Oncology - [London] : BioMed Central, 2015, 8(2022), 1 vom: 19. Juli |
---|---|
Übergeordnetes Werk: |
volume:8 ; year:2022 ; number:1 ; day:19 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/s40959-022-00139-w |
---|
Katalog-ID: |
SPR050866958 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR050866958 | ||
003 | DE-627 | ||
005 | 20230507234927.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40959-022-00139-w |2 doi | |
035 | |a (DE-627)SPR050866958 | ||
035 | |a (SPR)s40959-022-00139-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ewer, Michael S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some agents is uncertain. Additionally, such discrepancies may lead to the creation of over-cautious surveillance algorithms. Reasons for these reported differences are complex and often reflect subtleties in the criteria for individual patient evaluation. Both clinical trial data and real-world data have potential flaws that make reconciliation problematic. Importantly, however, both provide crucial information regarding the risk of adverse events. Major factors contribute to these differences including different tools used to diagnose events, and how those tools are interpreted. Additionally, differences in the populations of clinical trial participants and real-world populations play a crucial role. This paper looks at these differences and provides a perspective intended to help clinicians interpret reported variations in event rates derived from highly scrutinized clinical trials and broader real-world data. | ||
650 | 4 | |a Clinical trial adverse event rates |7 (dpeaa)DE-He213 | |
650 | 4 | |a Post-approval event rates |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reconciliation of event rate discrepancies |7 (dpeaa)DE-He213 | |
650 | 4 | |a Disproportionality analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pharmacoepidemiology |7 (dpeaa)DE-He213 | |
700 | 1 | |a Herson, Jay |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cardio-Oncology |d [London] : BioMed Central, 2015 |g 8(2022), 1 vom: 19. Juli |w (DE-627)844073377 |w (DE-600)2842786-5 |x 2057-3804 |7 nnns |
773 | 1 | 8 | |g volume:8 |g year:2022 |g number:1 |g day:19 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40959-022-00139-w |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 8 |j 2022 |e 1 |b 19 |c 07 |
author_variant |
m s e ms mse j h jh |
---|---|
matchkey_str |
article:20573804:2022----::adoaclrdeseetioclgtiludrtnignapeitnteifrnebtenln |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s40959-022-00139-w doi (DE-627)SPR050866958 (SPR)s40959-022-00139-w-e DE-627 ger DE-627 rakwb eng Ewer, Michael S. verfasserin aut Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some agents is uncertain. Additionally, such discrepancies may lead to the creation of over-cautious surveillance algorithms. Reasons for these reported differences are complex and often reflect subtleties in the criteria for individual patient evaluation. Both clinical trial data and real-world data have potential flaws that make reconciliation problematic. Importantly, however, both provide crucial information regarding the risk of adverse events. Major factors contribute to these differences including different tools used to diagnose events, and how those tools are interpreted. Additionally, differences in the populations of clinical trial participants and real-world populations play a crucial role. This paper looks at these differences and provides a perspective intended to help clinicians interpret reported variations in event rates derived from highly scrutinized clinical trials and broader real-world data. Clinical trial adverse event rates (dpeaa)DE-He213 Post-approval event rates (dpeaa)DE-He213 Reconciliation of event rate discrepancies (dpeaa)DE-He213 Disproportionality analysis (dpeaa)DE-He213 Pharmacoepidemiology (dpeaa)DE-He213 Herson, Jay aut Enthalten in Cardio-Oncology [London] : BioMed Central, 2015 8(2022), 1 vom: 19. Juli (DE-627)844073377 (DE-600)2842786-5 2057-3804 nnns volume:8 year:2022 number:1 day:19 month:07 https://dx.doi.org/10.1186/s40959-022-00139-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 1 19 07 |
spelling |
10.1186/s40959-022-00139-w doi (DE-627)SPR050866958 (SPR)s40959-022-00139-w-e DE-627 ger DE-627 rakwb eng Ewer, Michael S. verfasserin aut Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some agents is uncertain. Additionally, such discrepancies may lead to the creation of over-cautious surveillance algorithms. Reasons for these reported differences are complex and often reflect subtleties in the criteria for individual patient evaluation. Both clinical trial data and real-world data have potential flaws that make reconciliation problematic. Importantly, however, both provide crucial information regarding the risk of adverse events. Major factors contribute to these differences including different tools used to diagnose events, and how those tools are interpreted. Additionally, differences in the populations of clinical trial participants and real-world populations play a crucial role. This paper looks at these differences and provides a perspective intended to help clinicians interpret reported variations in event rates derived from highly scrutinized clinical trials and broader real-world data. Clinical trial adverse event rates (dpeaa)DE-He213 Post-approval event rates (dpeaa)DE-He213 Reconciliation of event rate discrepancies (dpeaa)DE-He213 Disproportionality analysis (dpeaa)DE-He213 Pharmacoepidemiology (dpeaa)DE-He213 Herson, Jay aut Enthalten in Cardio-Oncology [London] : BioMed Central, 2015 8(2022), 1 vom: 19. Juli (DE-627)844073377 (DE-600)2842786-5 2057-3804 nnns volume:8 year:2022 number:1 day:19 month:07 https://dx.doi.org/10.1186/s40959-022-00139-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 1 19 07 |
allfields_unstemmed |
10.1186/s40959-022-00139-w doi (DE-627)SPR050866958 (SPR)s40959-022-00139-w-e DE-627 ger DE-627 rakwb eng Ewer, Michael S. verfasserin aut Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some agents is uncertain. Additionally, such discrepancies may lead to the creation of over-cautious surveillance algorithms. Reasons for these reported differences are complex and often reflect subtleties in the criteria for individual patient evaluation. Both clinical trial data and real-world data have potential flaws that make reconciliation problematic. Importantly, however, both provide crucial information regarding the risk of adverse events. Major factors contribute to these differences including different tools used to diagnose events, and how those tools are interpreted. Additionally, differences in the populations of clinical trial participants and real-world populations play a crucial role. This paper looks at these differences and provides a perspective intended to help clinicians interpret reported variations in event rates derived from highly scrutinized clinical trials and broader real-world data. Clinical trial adverse event rates (dpeaa)DE-He213 Post-approval event rates (dpeaa)DE-He213 Reconciliation of event rate discrepancies (dpeaa)DE-He213 Disproportionality analysis (dpeaa)DE-He213 Pharmacoepidemiology (dpeaa)DE-He213 Herson, Jay aut Enthalten in Cardio-Oncology [London] : BioMed Central, 2015 8(2022), 1 vom: 19. Juli (DE-627)844073377 (DE-600)2842786-5 2057-3804 nnns volume:8 year:2022 number:1 day:19 month:07 https://dx.doi.org/10.1186/s40959-022-00139-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 1 19 07 |
allfieldsGer |
10.1186/s40959-022-00139-w doi (DE-627)SPR050866958 (SPR)s40959-022-00139-w-e DE-627 ger DE-627 rakwb eng Ewer, Michael S. verfasserin aut Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some agents is uncertain. Additionally, such discrepancies may lead to the creation of over-cautious surveillance algorithms. Reasons for these reported differences are complex and often reflect subtleties in the criteria for individual patient evaluation. Both clinical trial data and real-world data have potential flaws that make reconciliation problematic. Importantly, however, both provide crucial information regarding the risk of adverse events. Major factors contribute to these differences including different tools used to diagnose events, and how those tools are interpreted. Additionally, differences in the populations of clinical trial participants and real-world populations play a crucial role. This paper looks at these differences and provides a perspective intended to help clinicians interpret reported variations in event rates derived from highly scrutinized clinical trials and broader real-world data. Clinical trial adverse event rates (dpeaa)DE-He213 Post-approval event rates (dpeaa)DE-He213 Reconciliation of event rate discrepancies (dpeaa)DE-He213 Disproportionality analysis (dpeaa)DE-He213 Pharmacoepidemiology (dpeaa)DE-He213 Herson, Jay aut Enthalten in Cardio-Oncology [London] : BioMed Central, 2015 8(2022), 1 vom: 19. Juli (DE-627)844073377 (DE-600)2842786-5 2057-3804 nnns volume:8 year:2022 number:1 day:19 month:07 https://dx.doi.org/10.1186/s40959-022-00139-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 1 19 07 |
allfieldsSound |
10.1186/s40959-022-00139-w doi (DE-627)SPR050866958 (SPR)s40959-022-00139-w-e DE-627 ger DE-627 rakwb eng Ewer, Michael S. verfasserin aut Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some agents is uncertain. Additionally, such discrepancies may lead to the creation of over-cautious surveillance algorithms. Reasons for these reported differences are complex and often reflect subtleties in the criteria for individual patient evaluation. Both clinical trial data and real-world data have potential flaws that make reconciliation problematic. Importantly, however, both provide crucial information regarding the risk of adverse events. Major factors contribute to these differences including different tools used to diagnose events, and how those tools are interpreted. Additionally, differences in the populations of clinical trial participants and real-world populations play a crucial role. This paper looks at these differences and provides a perspective intended to help clinicians interpret reported variations in event rates derived from highly scrutinized clinical trials and broader real-world data. Clinical trial adverse event rates (dpeaa)DE-He213 Post-approval event rates (dpeaa)DE-He213 Reconciliation of event rate discrepancies (dpeaa)DE-He213 Disproportionality analysis (dpeaa)DE-He213 Pharmacoepidemiology (dpeaa)DE-He213 Herson, Jay aut Enthalten in Cardio-Oncology [London] : BioMed Central, 2015 8(2022), 1 vom: 19. Juli (DE-627)844073377 (DE-600)2842786-5 2057-3804 nnns volume:8 year:2022 number:1 day:19 month:07 https://dx.doi.org/10.1186/s40959-022-00139-w kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 8 2022 1 19 07 |
language |
English |
source |
Enthalten in Cardio-Oncology 8(2022), 1 vom: 19. Juli volume:8 year:2022 number:1 day:19 month:07 |
sourceStr |
Enthalten in Cardio-Oncology 8(2022), 1 vom: 19. Juli volume:8 year:2022 number:1 day:19 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Clinical trial adverse event rates Post-approval event rates Reconciliation of event rate discrepancies Disproportionality analysis Pharmacoepidemiology |
isfreeaccess_bool |
true |
container_title |
Cardio-Oncology |
authorswithroles_txt_mv |
Ewer, Michael S. @@aut@@ Herson, Jay @@aut@@ |
publishDateDaySort_date |
2022-07-19T00:00:00Z |
hierarchy_top_id |
844073377 |
id |
SPR050866958 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050866958</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507234927.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40959-022-00139-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050866958</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40959-022-00139-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ewer, Michael S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some agents is uncertain. Additionally, such discrepancies may lead to the creation of over-cautious surveillance algorithms. Reasons for these reported differences are complex and often reflect subtleties in the criteria for individual patient evaluation. Both clinical trial data and real-world data have potential flaws that make reconciliation problematic. Importantly, however, both provide crucial information regarding the risk of adverse events. Major factors contribute to these differences including different tools used to diagnose events, and how those tools are interpreted. Additionally, differences in the populations of clinical trial participants and real-world populations play a crucial role. This paper looks at these differences and provides a perspective intended to help clinicians interpret reported variations in event rates derived from highly scrutinized clinical trials and broader real-world data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical trial adverse event rates</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Post-approval event rates</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconciliation of event rate discrepancies</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disproportionality analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pharmacoepidemiology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herson, Jay</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cardio-Oncology</subfield><subfield code="d">[London] : BioMed Central, 2015</subfield><subfield code="g">8(2022), 1 vom: 19. Juli</subfield><subfield code="w">(DE-627)844073377</subfield><subfield code="w">(DE-600)2842786-5</subfield><subfield code="x">2057-3804</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40959-022-00139-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Ewer, Michael S. |
spellingShingle |
Ewer, Michael S. misc Clinical trial adverse event rates misc Post-approval event rates misc Reconciliation of event rate discrepancies misc Disproportionality analysis misc Pharmacoepidemiology Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports |
authorStr |
Ewer, Michael S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)844073377 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2057-3804 |
topic_title |
Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports Clinical trial adverse event rates (dpeaa)DE-He213 Post-approval event rates (dpeaa)DE-He213 Reconciliation of event rate discrepancies (dpeaa)DE-He213 Disproportionality analysis (dpeaa)DE-He213 Pharmacoepidemiology (dpeaa)DE-He213 |
topic |
misc Clinical trial adverse event rates misc Post-approval event rates misc Reconciliation of event rate discrepancies misc Disproportionality analysis misc Pharmacoepidemiology |
topic_unstemmed |
misc Clinical trial adverse event rates misc Post-approval event rates misc Reconciliation of event rate discrepancies misc Disproportionality analysis misc Pharmacoepidemiology |
topic_browse |
misc Clinical trial adverse event rates misc Post-approval event rates misc Reconciliation of event rate discrepancies misc Disproportionality analysis misc Pharmacoepidemiology |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cardio-Oncology |
hierarchy_parent_id |
844073377 |
hierarchy_top_title |
Cardio-Oncology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)844073377 (DE-600)2842786-5 |
title |
Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports |
ctrlnum |
(DE-627)SPR050866958 (SPR)s40959-022-00139-w-e |
title_full |
Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports |
author_sort |
Ewer, Michael S. |
journal |
Cardio-Oncology |
journalStr |
Cardio-Oncology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ewer, Michael S. Herson, Jay |
container_volume |
8 |
format_se |
Elektronische Aufsätze |
author-letter |
Ewer, Michael S. |
doi_str_mv |
10.1186/s40959-022-00139-w |
title_sort |
cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports |
title_auth |
Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports |
abstract |
Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some agents is uncertain. Additionally, such discrepancies may lead to the creation of over-cautious surveillance algorithms. Reasons for these reported differences are complex and often reflect subtleties in the criteria for individual patient evaluation. Both clinical trial data and real-world data have potential flaws that make reconciliation problematic. Importantly, however, both provide crucial information regarding the risk of adverse events. Major factors contribute to these differences including different tools used to diagnose events, and how those tools are interpreted. Additionally, differences in the populations of clinical trial participants and real-world populations play a crucial role. This paper looks at these differences and provides a perspective intended to help clinicians interpret reported variations in event rates derived from highly scrutinized clinical trials and broader real-world data. © The Author(s) 2022 |
abstractGer |
Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some agents is uncertain. Additionally, such discrepancies may lead to the creation of over-cautious surveillance algorithms. Reasons for these reported differences are complex and often reflect subtleties in the criteria for individual patient evaluation. Both clinical trial data and real-world data have potential flaws that make reconciliation problematic. Importantly, however, both provide crucial information regarding the risk of adverse events. Major factors contribute to these differences including different tools used to diagnose events, and how those tools are interpreted. Additionally, differences in the populations of clinical trial participants and real-world populations play a crucial role. This paper looks at these differences and provides a perspective intended to help clinicians interpret reported variations in event rates derived from highly scrutinized clinical trials and broader real-world data. © The Author(s) 2022 |
abstract_unstemmed |
Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some agents is uncertain. Additionally, such discrepancies may lead to the creation of over-cautious surveillance algorithms. Reasons for these reported differences are complex and often reflect subtleties in the criteria for individual patient evaluation. Both clinical trial data and real-world data have potential flaws that make reconciliation problematic. Importantly, however, both provide crucial information regarding the risk of adverse events. Major factors contribute to these differences including different tools used to diagnose events, and how those tools are interpreted. Additionally, differences in the populations of clinical trial participants and real-world populations play a crucial role. This paper looks at these differences and provides a perspective intended to help clinicians interpret reported variations in event rates derived from highly scrutinized clinical trials and broader real-world data. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports |
url |
https://dx.doi.org/10.1186/s40959-022-00139-w |
remote_bool |
true |
author2 |
Herson, Jay |
author2Str |
Herson, Jay |
ppnlink |
844073377 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40959-022-00139-w |
up_date |
2024-07-03T18:17:48.420Z |
_version_ |
1803582878226841602 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR050866958</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507234927.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40959-022-00139-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050866958</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40959-022-00139-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ewer, Michael S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cardiovascular adverse events in oncology trials: understanding and appreciating the differences between clinical trial data and real-world reports</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Reports of cardiac adverse events from oncology clinical trials often are at variance with reports derived from clinical observations or data-base reviews. These differences may lead to confusion, as different levels of risks abound in the literature, and the true cardiac risk of using some agents is uncertain. Additionally, such discrepancies may lead to the creation of over-cautious surveillance algorithms. Reasons for these reported differences are complex and often reflect subtleties in the criteria for individual patient evaluation. Both clinical trial data and real-world data have potential flaws that make reconciliation problematic. Importantly, however, both provide crucial information regarding the risk of adverse events. Major factors contribute to these differences including different tools used to diagnose events, and how those tools are interpreted. Additionally, differences in the populations of clinical trial participants and real-world populations play a crucial role. This paper looks at these differences and provides a perspective intended to help clinicians interpret reported variations in event rates derived from highly scrutinized clinical trials and broader real-world data.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical trial adverse event rates</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Post-approval event rates</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reconciliation of event rate discrepancies</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disproportionality analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pharmacoepidemiology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herson, Jay</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cardio-Oncology</subfield><subfield code="d">[London] : BioMed Central, 2015</subfield><subfield code="g">8(2022), 1 vom: 19. Juli</subfield><subfield code="w">(DE-627)844073377</subfield><subfield code="w">(DE-600)2842786-5</subfield><subfield code="x">2057-3804</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:8</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40959-022-00139-w</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">8</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.402669 |