Stabilizing wide-bandgap halide perovskites through hydrogen bonding
Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable...
Ausführliche Beschreibung
Autor*in: |
Tao, Lei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Asheville, NC : Science in China Press, 1995, 65(2022), 8 vom: 27. Juni, Seite 1650-1660 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2022 ; number:8 ; day:27 ; month:06 ; pages:1650-1660 |
Links: |
---|
DOI / URN: |
10.1007/s11426-021-1306-4 |
---|
Katalog-ID: |
SPR050898485 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR050898485 | ||
003 | DE-627 | ||
005 | 20230509104615.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11426-021-1306-4 |2 doi | |
035 | |a (DE-627)SPR050898485 | ||
035 | |a (SPR)s11426-021-1306-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Tao, Lei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stabilizing wide-bandgap halide perovskites through hydrogen bonding |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 | ||
520 | |a Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability. | ||
650 | 4 | |a wide-bandgap perovskite |7 (dpeaa)DE-He213 | |
650 | 4 | |a hydrogen bonds |7 (dpeaa)DE-He213 | |
650 | 4 | |a perovskite solar cells |7 (dpeaa)DE-He213 | |
650 | 4 | |a ionic liquid |7 (dpeaa)DE-He213 | |
700 | 1 | |a Du, Xiaoqin |4 aut | |
700 | 1 | |a Hu, Jianfei |4 aut | |
700 | 1 | |a Wang, Shixuan |4 aut | |
700 | 1 | |a Lin, Chen |4 aut | |
700 | 1 | |a Wei, Qi |4 aut | |
700 | 1 | |a Xia, Yingdong |4 aut | |
700 | 1 | |a Xing, Guichuan |4 aut | |
700 | 1 | |a Chen, Yonghua |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Asheville, NC : Science in China Press, 1995 |g 65(2022), 8 vom: 27. Juni, Seite 1650-1660 |w (DE-627)327310405 |w (DE-600)2043454-6 |x 1862-2771 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2022 |g number:8 |g day:27 |g month:06 |g pages:1650-1660 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11426-021-1306-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 65 |j 2022 |e 8 |b 27 |c 06 |h 1650-1660 |
author_variant |
l t lt x d xd j h jh s w sw c l cl q w qw y x yx g x gx y c yc |
---|---|
matchkey_str |
article:18622771:2022----::tblznwdbngpaieeosietru |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11426-021-1306-4 doi (DE-627)SPR050898485 (SPR)s11426-021-1306-4-e DE-627 ger DE-627 rakwb eng Tao, Lei verfasserin aut Stabilizing wide-bandgap halide perovskites through hydrogen bonding 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability. wide-bandgap perovskite (dpeaa)DE-He213 hydrogen bonds (dpeaa)DE-He213 perovskite solar cells (dpeaa)DE-He213 ionic liquid (dpeaa)DE-He213 Du, Xiaoqin aut Hu, Jianfei aut Wang, Shixuan aut Lin, Chen aut Wei, Qi aut Xia, Yingdong aut Xing, Guichuan aut Chen, Yonghua aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 65(2022), 8 vom: 27. Juni, Seite 1650-1660 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:65 year:2022 number:8 day:27 month:06 pages:1650-1660 https://dx.doi.org/10.1007/s11426-021-1306-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 8 27 06 1650-1660 |
spelling |
10.1007/s11426-021-1306-4 doi (DE-627)SPR050898485 (SPR)s11426-021-1306-4-e DE-627 ger DE-627 rakwb eng Tao, Lei verfasserin aut Stabilizing wide-bandgap halide perovskites through hydrogen bonding 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability. wide-bandgap perovskite (dpeaa)DE-He213 hydrogen bonds (dpeaa)DE-He213 perovskite solar cells (dpeaa)DE-He213 ionic liquid (dpeaa)DE-He213 Du, Xiaoqin aut Hu, Jianfei aut Wang, Shixuan aut Lin, Chen aut Wei, Qi aut Xia, Yingdong aut Xing, Guichuan aut Chen, Yonghua aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 65(2022), 8 vom: 27. Juni, Seite 1650-1660 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:65 year:2022 number:8 day:27 month:06 pages:1650-1660 https://dx.doi.org/10.1007/s11426-021-1306-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 8 27 06 1650-1660 |
allfields_unstemmed |
10.1007/s11426-021-1306-4 doi (DE-627)SPR050898485 (SPR)s11426-021-1306-4-e DE-627 ger DE-627 rakwb eng Tao, Lei verfasserin aut Stabilizing wide-bandgap halide perovskites through hydrogen bonding 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability. wide-bandgap perovskite (dpeaa)DE-He213 hydrogen bonds (dpeaa)DE-He213 perovskite solar cells (dpeaa)DE-He213 ionic liquid (dpeaa)DE-He213 Du, Xiaoqin aut Hu, Jianfei aut Wang, Shixuan aut Lin, Chen aut Wei, Qi aut Xia, Yingdong aut Xing, Guichuan aut Chen, Yonghua aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 65(2022), 8 vom: 27. Juni, Seite 1650-1660 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:65 year:2022 number:8 day:27 month:06 pages:1650-1660 https://dx.doi.org/10.1007/s11426-021-1306-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 8 27 06 1650-1660 |
allfieldsGer |
10.1007/s11426-021-1306-4 doi (DE-627)SPR050898485 (SPR)s11426-021-1306-4-e DE-627 ger DE-627 rakwb eng Tao, Lei verfasserin aut Stabilizing wide-bandgap halide perovskites through hydrogen bonding 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability. wide-bandgap perovskite (dpeaa)DE-He213 hydrogen bonds (dpeaa)DE-He213 perovskite solar cells (dpeaa)DE-He213 ionic liquid (dpeaa)DE-He213 Du, Xiaoqin aut Hu, Jianfei aut Wang, Shixuan aut Lin, Chen aut Wei, Qi aut Xia, Yingdong aut Xing, Guichuan aut Chen, Yonghua aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 65(2022), 8 vom: 27. Juni, Seite 1650-1660 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:65 year:2022 number:8 day:27 month:06 pages:1650-1660 https://dx.doi.org/10.1007/s11426-021-1306-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 8 27 06 1650-1660 |
allfieldsSound |
10.1007/s11426-021-1306-4 doi (DE-627)SPR050898485 (SPR)s11426-021-1306-4-e DE-627 ger DE-627 rakwb eng Tao, Lei verfasserin aut Stabilizing wide-bandgap halide perovskites through hydrogen bonding 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability. wide-bandgap perovskite (dpeaa)DE-He213 hydrogen bonds (dpeaa)DE-He213 perovskite solar cells (dpeaa)DE-He213 ionic liquid (dpeaa)DE-He213 Du, Xiaoqin aut Hu, Jianfei aut Wang, Shixuan aut Lin, Chen aut Wei, Qi aut Xia, Yingdong aut Xing, Guichuan aut Chen, Yonghua aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 65(2022), 8 vom: 27. Juni, Seite 1650-1660 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:65 year:2022 number:8 day:27 month:06 pages:1650-1660 https://dx.doi.org/10.1007/s11426-021-1306-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 8 27 06 1650-1660 |
language |
English |
source |
Enthalten in Science in China 65(2022), 8 vom: 27. Juni, Seite 1650-1660 volume:65 year:2022 number:8 day:27 month:06 pages:1650-1660 |
sourceStr |
Enthalten in Science in China 65(2022), 8 vom: 27. Juni, Seite 1650-1660 volume:65 year:2022 number:8 day:27 month:06 pages:1650-1660 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
wide-bandgap perovskite hydrogen bonds perovskite solar cells ionic liquid |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Tao, Lei @@aut@@ Du, Xiaoqin @@aut@@ Hu, Jianfei @@aut@@ Wang, Shixuan @@aut@@ Lin, Chen @@aut@@ Wei, Qi @@aut@@ Xia, Yingdong @@aut@@ Xing, Guichuan @@aut@@ Chen, Yonghua @@aut@@ |
publishDateDaySort_date |
2022-06-27T00:00:00Z |
hierarchy_top_id |
327310405 |
id |
SPR050898485 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR050898485</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509104615.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11426-021-1306-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050898485</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11426-021-1306-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tao, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stabilizing wide-bandgap halide perovskites through hydrogen bonding</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wide-bandgap perovskite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogen bonds</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perovskite solar cells</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ionic liquid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Xiaoqin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Jianfei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shixuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Chen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Qi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Yingdong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Guichuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yonghua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">65(2022), 8 vom: 27. Juni, Seite 1650-1660</subfield><subfield code="w">(DE-627)327310405</subfield><subfield code="w">(DE-600)2043454-6</subfield><subfield code="x">1862-2771</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">day:27</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1650-1660</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11426-021-1306-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="b">27</subfield><subfield code="c">06</subfield><subfield code="h">1650-1660</subfield></datafield></record></collection>
|
author |
Tao, Lei |
spellingShingle |
Tao, Lei misc wide-bandgap perovskite misc hydrogen bonds misc perovskite solar cells misc ionic liquid Stabilizing wide-bandgap halide perovskites through hydrogen bonding |
authorStr |
Tao, Lei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)327310405 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2771 |
topic_title |
Stabilizing wide-bandgap halide perovskites through hydrogen bonding wide-bandgap perovskite (dpeaa)DE-He213 hydrogen bonds (dpeaa)DE-He213 perovskite solar cells (dpeaa)DE-He213 ionic liquid (dpeaa)DE-He213 |
topic |
misc wide-bandgap perovskite misc hydrogen bonds misc perovskite solar cells misc ionic liquid |
topic_unstemmed |
misc wide-bandgap perovskite misc hydrogen bonds misc perovskite solar cells misc ionic liquid |
topic_browse |
misc wide-bandgap perovskite misc hydrogen bonds misc perovskite solar cells misc ionic liquid |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
327310405 |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)327310405 (DE-600)2043454-6 |
title |
Stabilizing wide-bandgap halide perovskites through hydrogen bonding |
ctrlnum |
(DE-627)SPR050898485 (SPR)s11426-021-1306-4-e |
title_full |
Stabilizing wide-bandgap halide perovskites through hydrogen bonding |
author_sort |
Tao, Lei |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1650 |
author_browse |
Tao, Lei Du, Xiaoqin Hu, Jianfei Wang, Shixuan Lin, Chen Wei, Qi Xia, Yingdong Xing, Guichuan Chen, Yonghua |
container_volume |
65 |
format_se |
Elektronische Aufsätze |
author-letter |
Tao, Lei |
doi_str_mv |
10.1007/s11426-021-1306-4 |
title_sort |
stabilizing wide-bandgap halide perovskites through hydrogen bonding |
title_auth |
Stabilizing wide-bandgap halide perovskites through hydrogen bonding |
abstract |
Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstractGer |
Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
8 |
title_short |
Stabilizing wide-bandgap halide perovskites through hydrogen bonding |
url |
https://dx.doi.org/10.1007/s11426-021-1306-4 |
remote_bool |
true |
author2 |
Du, Xiaoqin Hu, Jianfei Wang, Shixuan Lin, Chen Wei, Qi Xia, Yingdong Xing, Guichuan Chen, Yonghua |
author2Str |
Du, Xiaoqin Hu, Jianfei Wang, Shixuan Lin, Chen Wei, Qi Xia, Yingdong Xing, Guichuan Chen, Yonghua |
ppnlink |
327310405 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11426-021-1306-4 |
up_date |
2024-07-03T18:29:59.708Z |
_version_ |
1803583644982312960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR050898485</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509104615.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11426-021-1306-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050898485</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11426-021-1306-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tao, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stabilizing wide-bandgap halide perovskites through hydrogen bonding</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Wide-bandgap (WBG) perovskites have emerged as promising materials for the construction of perovskite/silicon tandem solar cells. However, poor long-term operational stability due to the notorious photo-induced halide segregation is commonly observed. Here, we report the synthesis of stable ∼1.73 eV MA-based mixed I/Br WBG perovskites by ionic liquid solvent, methylammonium acetate (MAAc). The special internal hydrogen bond (N—H⋯I and N—H⋯Br) environment in the ionic liquid MAAc solvent over traditional N,N-dimethylformamide/dimethyl sulfoxide solvent stabilizes the diffusion of halide ions. This allows the suppression of the halide segregation in the mixed I/Br WBG perovskite film, which is previously suggested to be difficult. The hydrogen bonds also enable excellent decoupling of the crystal nucleation and growth process. Finally, a champion device efficiency of 20.59% is achieved, which is one of the highest reports, with improved ambient air, heat, and light stability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wide-bandgap perovskite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogen bonds</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">perovskite solar cells</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ionic liquid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Xiaoqin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Jianfei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shixuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Chen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Qi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Yingdong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xing, Guichuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yonghua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">65(2022), 8 vom: 27. Juni, Seite 1650-1660</subfield><subfield code="w">(DE-627)327310405</subfield><subfield code="w">(DE-600)2043454-6</subfield><subfield code="x">1862-2771</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">day:27</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1650-1660</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11426-021-1306-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="b">27</subfield><subfield code="c">06</subfield><subfield code="h">1650-1660</subfield></datafield></record></collection>
|
score |
7.401394 |