Magnetohydrostatic modeling of the solar atmosphere
Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magneti...
Ausführliche Beschreibung
Autor*in: |
Zhu, XiaoShuai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 1997, 65(2022), 8 vom: 15. Juni, Seite 1710-1726 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2022 ; number:8 ; day:15 ; month:06 ; pages:1710-1726 |
Links: |
---|
DOI / URN: |
10.1007/s11431-022-2047-8 |
---|
Katalog-ID: |
SPR050903128 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR050903128 | ||
003 | DE-627 | ||
005 | 20230509104820.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11431-022-2047-8 |2 doi | |
035 | |a (DE-627)SPR050903128 | ||
035 | |a (SPR)s11431-022-2047-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhu, XiaoShuai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Magnetohydrostatic modeling of the solar atmosphere |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 | ||
520 | |a Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms. | ||
650 | 4 | |a magnetic field |7 (dpeaa)DE-He213 | |
650 | 4 | |a photosphere |7 (dpeaa)DE-He213 | |
650 | 4 | |a chromosphere |7 (dpeaa)DE-He213 | |
650 | 4 | |a corona |7 (dpeaa)DE-He213 | |
700 | 1 | |a Neukirch, Thomas |4 aut | |
700 | 1 | |a Wiegelmann, Thomas |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 1997 |g 65(2022), 8 vom: 15. Juni, Seite 1710-1726 |w (DE-627)385614756 |w (DE-600)2142897-9 |x 1862-281X |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2022 |g number:8 |g day:15 |g month:06 |g pages:1710-1726 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11431-022-2047-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 65 |j 2022 |e 8 |b 15 |c 06 |h 1710-1726 |
author_variant |
x z xz t n tn t w tw |
---|---|
matchkey_str |
article:1862281X:2022----::anthdottcoeigfhs |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11431-022-2047-8 doi (DE-627)SPR050903128 (SPR)s11431-022-2047-8-e DE-627 ger DE-627 rakwb eng Zhu, XiaoShuai verfasserin aut Magnetohydrostatic modeling of the solar atmosphere 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms. magnetic field (dpeaa)DE-He213 photosphere (dpeaa)DE-He213 chromosphere (dpeaa)DE-He213 corona (dpeaa)DE-He213 Neukirch, Thomas aut Wiegelmann, Thomas aut Enthalten in Science in China Heidelberg : Springer, 1997 65(2022), 8 vom: 15. Juni, Seite 1710-1726 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:65 year:2022 number:8 day:15 month:06 pages:1710-1726 https://dx.doi.org/10.1007/s11431-022-2047-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 8 15 06 1710-1726 |
spelling |
10.1007/s11431-022-2047-8 doi (DE-627)SPR050903128 (SPR)s11431-022-2047-8-e DE-627 ger DE-627 rakwb eng Zhu, XiaoShuai verfasserin aut Magnetohydrostatic modeling of the solar atmosphere 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms. magnetic field (dpeaa)DE-He213 photosphere (dpeaa)DE-He213 chromosphere (dpeaa)DE-He213 corona (dpeaa)DE-He213 Neukirch, Thomas aut Wiegelmann, Thomas aut Enthalten in Science in China Heidelberg : Springer, 1997 65(2022), 8 vom: 15. Juni, Seite 1710-1726 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:65 year:2022 number:8 day:15 month:06 pages:1710-1726 https://dx.doi.org/10.1007/s11431-022-2047-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 8 15 06 1710-1726 |
allfields_unstemmed |
10.1007/s11431-022-2047-8 doi (DE-627)SPR050903128 (SPR)s11431-022-2047-8-e DE-627 ger DE-627 rakwb eng Zhu, XiaoShuai verfasserin aut Magnetohydrostatic modeling of the solar atmosphere 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms. magnetic field (dpeaa)DE-He213 photosphere (dpeaa)DE-He213 chromosphere (dpeaa)DE-He213 corona (dpeaa)DE-He213 Neukirch, Thomas aut Wiegelmann, Thomas aut Enthalten in Science in China Heidelberg : Springer, 1997 65(2022), 8 vom: 15. Juni, Seite 1710-1726 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:65 year:2022 number:8 day:15 month:06 pages:1710-1726 https://dx.doi.org/10.1007/s11431-022-2047-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 8 15 06 1710-1726 |
allfieldsGer |
10.1007/s11431-022-2047-8 doi (DE-627)SPR050903128 (SPR)s11431-022-2047-8-e DE-627 ger DE-627 rakwb eng Zhu, XiaoShuai verfasserin aut Magnetohydrostatic modeling of the solar atmosphere 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms. magnetic field (dpeaa)DE-He213 photosphere (dpeaa)DE-He213 chromosphere (dpeaa)DE-He213 corona (dpeaa)DE-He213 Neukirch, Thomas aut Wiegelmann, Thomas aut Enthalten in Science in China Heidelberg : Springer, 1997 65(2022), 8 vom: 15. Juni, Seite 1710-1726 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:65 year:2022 number:8 day:15 month:06 pages:1710-1726 https://dx.doi.org/10.1007/s11431-022-2047-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 8 15 06 1710-1726 |
allfieldsSound |
10.1007/s11431-022-2047-8 doi (DE-627)SPR050903128 (SPR)s11431-022-2047-8-e DE-627 ger DE-627 rakwb eng Zhu, XiaoShuai verfasserin aut Magnetohydrostatic modeling of the solar atmosphere 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms. magnetic field (dpeaa)DE-He213 photosphere (dpeaa)DE-He213 chromosphere (dpeaa)DE-He213 corona (dpeaa)DE-He213 Neukirch, Thomas aut Wiegelmann, Thomas aut Enthalten in Science in China Heidelberg : Springer, 1997 65(2022), 8 vom: 15. Juni, Seite 1710-1726 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:65 year:2022 number:8 day:15 month:06 pages:1710-1726 https://dx.doi.org/10.1007/s11431-022-2047-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 8 15 06 1710-1726 |
language |
English |
source |
Enthalten in Science in China 65(2022), 8 vom: 15. Juni, Seite 1710-1726 volume:65 year:2022 number:8 day:15 month:06 pages:1710-1726 |
sourceStr |
Enthalten in Science in China 65(2022), 8 vom: 15. Juni, Seite 1710-1726 volume:65 year:2022 number:8 day:15 month:06 pages:1710-1726 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
magnetic field photosphere chromosphere corona |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Zhu, XiaoShuai @@aut@@ Neukirch, Thomas @@aut@@ Wiegelmann, Thomas @@aut@@ |
publishDateDaySort_date |
2022-06-15T00:00:00Z |
hierarchy_top_id |
385614756 |
id |
SPR050903128 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR050903128</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509104820.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-022-2047-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050903128</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-022-2047-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, XiaoShuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetohydrostatic modeling of the solar atmosphere</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic field</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photosphere</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chromosphere</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">corona</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neukirch, Thomas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiegelmann, Thomas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">65(2022), 8 vom: 15. Juni, Seite 1710-1726</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1710-1726</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-022-2047-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="b">15</subfield><subfield code="c">06</subfield><subfield code="h">1710-1726</subfield></datafield></record></collection>
|
author |
Zhu, XiaoShuai |
spellingShingle |
Zhu, XiaoShuai misc magnetic field misc photosphere misc chromosphere misc corona Magnetohydrostatic modeling of the solar atmosphere |
authorStr |
Zhu, XiaoShuai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614756 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-281X |
topic_title |
Magnetohydrostatic modeling of the solar atmosphere magnetic field (dpeaa)DE-He213 photosphere (dpeaa)DE-He213 chromosphere (dpeaa)DE-He213 corona (dpeaa)DE-He213 |
topic |
misc magnetic field misc photosphere misc chromosphere misc corona |
topic_unstemmed |
misc magnetic field misc photosphere misc chromosphere misc corona |
topic_browse |
misc magnetic field misc photosphere misc chromosphere misc corona |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614756 |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614756 (DE-600)2142897-9 |
title |
Magnetohydrostatic modeling of the solar atmosphere |
ctrlnum |
(DE-627)SPR050903128 (SPR)s11431-022-2047-8-e |
title_full |
Magnetohydrostatic modeling of the solar atmosphere |
author_sort |
Zhu, XiaoShuai |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1710 |
author_browse |
Zhu, XiaoShuai Neukirch, Thomas Wiegelmann, Thomas |
container_volume |
65 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhu, XiaoShuai |
doi_str_mv |
10.1007/s11431-022-2047-8 |
title_sort |
magnetohydrostatic modeling of the solar atmosphere |
title_auth |
Magnetohydrostatic modeling of the solar atmosphere |
abstract |
Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstractGer |
Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
8 |
title_short |
Magnetohydrostatic modeling of the solar atmosphere |
url |
https://dx.doi.org/10.1007/s11431-022-2047-8 |
remote_bool |
true |
author2 |
Neukirch, Thomas Wiegelmann, Thomas |
author2Str |
Neukirch, Thomas Wiegelmann, Thomas |
ppnlink |
385614756 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11431-022-2047-8 |
up_date |
2024-07-03T18:31:45.613Z |
_version_ |
1803583756031754240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR050903128</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509104820.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-022-2047-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050903128</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-022-2047-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, XiaoShuai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetohydrostatic modeling of the solar atmosphere</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Understanding structures and evolutions of the magnetic fields and plasma in multiple layers on the Sun is very important. A force-free magnetic field which is an accurate approximation of the solar corona due to the low plasma β has been widely studied and used to model the coronal magnetic structure. While the force-freeness assumption is well satisfied in the solar corona, the lower atmosphere is not force-free given the high plasma β. Therefore, a magnetohydrostatic (MHS) equilibrium which takes into account plasma forces, such as pressure gradient and gravitational force, is considered to be more appropriate to describe the lower atmosphere. This paper reviews both analytical and numerical extrapolation methods based on the MHS assumption for calculating the magnetic fields and plasma in the solar atmosphere from measured magnetograms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic field</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">photosphere</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chromosphere</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">corona</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neukirch, Thomas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiegelmann, Thomas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">65(2022), 8 vom: 15. Juni, Seite 1710-1726</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:8</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1710-1726</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-022-2047-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2022</subfield><subfield code="e">8</subfield><subfield code="b">15</subfield><subfield code="c">06</subfield><subfield code="h">1710-1726</subfield></datafield></record></collection>
|
score |
7.401165 |