Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe
Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance...
Ausführliche Beschreibung
Autor*in: |
Pichler, Verena [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Parasites & vectors - London : BioMed Central, 2008, 15(2022), 1 vom: 05. Aug. |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:1 ; day:05 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/s13071-022-05407-3 |
---|
Katalog-ID: |
SPR050905147 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR050905147 | ||
003 | DE-627 | ||
005 | 20230509104830.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13071-022-05407-3 |2 doi | |
035 | |a (DE-627)SPR050905147 | ||
035 | |a (SPR)s13071-022-05407-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Pichler, Verena |e verfasserin |4 aut | |
245 | 1 | 0 | |a Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. Methods Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. Results The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. Conclusions The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities. Graphical Abstract | ||
650 | 4 | |a Mosquito |7 (dpeaa)DE-He213 | |
650 | 4 | |a Insecticide resistance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Kdr |7 (dpeaa)DE-He213 | |
650 | 4 | |a Europe |7 (dpeaa)DE-He213 | |
650 | 4 | |a Integrated vector management |7 (dpeaa)DE-He213 | |
650 | 4 | |a Arbovirus vector |7 (dpeaa)DE-He213 | |
650 | 4 | |a Vector control |7 (dpeaa)DE-He213 | |
700 | 1 | |a Caputo, Beniamino |4 aut | |
700 | 1 | |a Valadas, Vera |4 aut | |
700 | 1 | |a Micocci, Martina |4 aut | |
700 | 1 | |a Horvath, Cintia |4 aut | |
700 | 1 | |a Virgillito, Chiara |4 aut | |
700 | 1 | |a Akiner, Mustafa |4 aut | |
700 | 1 | |a Balatsos, Georgios |4 aut | |
700 | 1 | |a Bender, Christelle |4 aut | |
700 | 1 | |a Besnard, Gilles |4 aut | |
700 | 1 | |a Bravo-Barriga, Daniel |4 aut | |
700 | 1 | |a Bueno-Mari, Rubén |4 aut | |
700 | 1 | |a Collantes, Francisco |4 aut | |
700 | 1 | |a Delacour-Estrella, Sarah |4 aut | |
700 | 1 | |a Dikolli, Enkelejda |4 aut | |
700 | 1 | |a Falcuta, Elena |4 aut | |
700 | 1 | |a Flacio, Eleonora |4 aut | |
700 | 1 | |a García-Pérez, Ana L. |4 aut | |
700 | 1 | |a Kalan, Katja |4 aut | |
700 | 1 | |a Kavran, Mihaela |4 aut | |
700 | 1 | |a L’Ambert, Gregory |4 aut | |
700 | 1 | |a Lia, Riccardo P. |4 aut | |
700 | 1 | |a Marabuto, Eduardo |4 aut | |
700 | 1 | |a Medialdea, Raquel |4 aut | |
700 | 1 | |a Melero-Alcibar, Rosario |4 aut | |
700 | 1 | |a Michaelakis, Antonios |4 aut | |
700 | 1 | |a Mihalca, Andrei |4 aut | |
700 | 1 | |a Mikov, Ognyan |4 aut | |
700 | 1 | |a Miranda, Miguel A. |4 aut | |
700 | 1 | |a Müller, Pie |4 aut | |
700 | 1 | |a Otranto, Domenico |4 aut | |
700 | 1 | |a Pajovic, Igor |4 aut | |
700 | 1 | |a Petric, Dusan |4 aut | |
700 | 1 | |a Rebelo, Maria Teresa |4 aut | |
700 | 1 | |a Robert, Vincent |4 aut | |
700 | 1 | |a Rogozi, Elton |4 aut | |
700 | 1 | |a Tello, Ana |4 aut | |
700 | 1 | |a Zitko, Toni |4 aut | |
700 | 1 | |a Schaffner, Francis |4 aut | |
700 | 1 | |a Pinto, Joao |4 aut | |
700 | 1 | |a della Torre, Alessandra |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Parasites & vectors |d London : BioMed Central, 2008 |g 15(2022), 1 vom: 05. Aug. |w (DE-627)558690076 |w (DE-600)2409480-8 |x 1756-3305 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:1 |g day:05 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13071-022-05407-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 1 |b 05 |c 08 |
author_variant |
v p vp b c bc v v vv m m mm c h ch c v cv m a ma g b gb c b cb g b gb d b b dbb r b m rbm f c fc s d e sde e d ed e f ef e f ef a l g p alg algp k k kk m k mk g l gl r p l rp rpl e m em r m rm r m a rma a m am a m am o m om m a m ma mam p m pm d o do i p ip d p dp m t r mt mtr v r vr e r er a t at t z tz f s fs j p jp t a d ta tad |
---|---|
matchkey_str |
article:17563305:2022----::egahcitiuinfhv06kokoneitneuainneeabp |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s13071-022-05407-3 doi (DE-627)SPR050905147 (SPR)s13071-022-05407-3-e DE-627 ger DE-627 rakwb eng Pichler, Verena verfasserin aut Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. Methods Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. Results The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. Conclusions The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities. Graphical Abstract Mosquito (dpeaa)DE-He213 Insecticide resistance (dpeaa)DE-He213 Kdr (dpeaa)DE-He213 Europe (dpeaa)DE-He213 Integrated vector management (dpeaa)DE-He213 Arbovirus vector (dpeaa)DE-He213 Vector control (dpeaa)DE-He213 Caputo, Beniamino aut Valadas, Vera aut Micocci, Martina aut Horvath, Cintia aut Virgillito, Chiara aut Akiner, Mustafa aut Balatsos, Georgios aut Bender, Christelle aut Besnard, Gilles aut Bravo-Barriga, Daniel aut Bueno-Mari, Rubén aut Collantes, Francisco aut Delacour-Estrella, Sarah aut Dikolli, Enkelejda aut Falcuta, Elena aut Flacio, Eleonora aut García-Pérez, Ana L. aut Kalan, Katja aut Kavran, Mihaela aut L’Ambert, Gregory aut Lia, Riccardo P. aut Marabuto, Eduardo aut Medialdea, Raquel aut Melero-Alcibar, Rosario aut Michaelakis, Antonios aut Mihalca, Andrei aut Mikov, Ognyan aut Miranda, Miguel A. aut Müller, Pie aut Otranto, Domenico aut Pajovic, Igor aut Petric, Dusan aut Rebelo, Maria Teresa aut Robert, Vincent aut Rogozi, Elton aut Tello, Ana aut Zitko, Toni aut Schaffner, Francis aut Pinto, Joao aut della Torre, Alessandra aut Enthalten in Parasites & vectors London : BioMed Central, 2008 15(2022), 1 vom: 05. Aug. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:15 year:2022 number:1 day:05 month:08 https://dx.doi.org/10.1186/s13071-022-05407-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 1 05 08 |
spelling |
10.1186/s13071-022-05407-3 doi (DE-627)SPR050905147 (SPR)s13071-022-05407-3-e DE-627 ger DE-627 rakwb eng Pichler, Verena verfasserin aut Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. Methods Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. Results The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. Conclusions The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities. Graphical Abstract Mosquito (dpeaa)DE-He213 Insecticide resistance (dpeaa)DE-He213 Kdr (dpeaa)DE-He213 Europe (dpeaa)DE-He213 Integrated vector management (dpeaa)DE-He213 Arbovirus vector (dpeaa)DE-He213 Vector control (dpeaa)DE-He213 Caputo, Beniamino aut Valadas, Vera aut Micocci, Martina aut Horvath, Cintia aut Virgillito, Chiara aut Akiner, Mustafa aut Balatsos, Georgios aut Bender, Christelle aut Besnard, Gilles aut Bravo-Barriga, Daniel aut Bueno-Mari, Rubén aut Collantes, Francisco aut Delacour-Estrella, Sarah aut Dikolli, Enkelejda aut Falcuta, Elena aut Flacio, Eleonora aut García-Pérez, Ana L. aut Kalan, Katja aut Kavran, Mihaela aut L’Ambert, Gregory aut Lia, Riccardo P. aut Marabuto, Eduardo aut Medialdea, Raquel aut Melero-Alcibar, Rosario aut Michaelakis, Antonios aut Mihalca, Andrei aut Mikov, Ognyan aut Miranda, Miguel A. aut Müller, Pie aut Otranto, Domenico aut Pajovic, Igor aut Petric, Dusan aut Rebelo, Maria Teresa aut Robert, Vincent aut Rogozi, Elton aut Tello, Ana aut Zitko, Toni aut Schaffner, Francis aut Pinto, Joao aut della Torre, Alessandra aut Enthalten in Parasites & vectors London : BioMed Central, 2008 15(2022), 1 vom: 05. Aug. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:15 year:2022 number:1 day:05 month:08 https://dx.doi.org/10.1186/s13071-022-05407-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 1 05 08 |
allfields_unstemmed |
10.1186/s13071-022-05407-3 doi (DE-627)SPR050905147 (SPR)s13071-022-05407-3-e DE-627 ger DE-627 rakwb eng Pichler, Verena verfasserin aut Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. Methods Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. Results The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. Conclusions The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities. Graphical Abstract Mosquito (dpeaa)DE-He213 Insecticide resistance (dpeaa)DE-He213 Kdr (dpeaa)DE-He213 Europe (dpeaa)DE-He213 Integrated vector management (dpeaa)DE-He213 Arbovirus vector (dpeaa)DE-He213 Vector control (dpeaa)DE-He213 Caputo, Beniamino aut Valadas, Vera aut Micocci, Martina aut Horvath, Cintia aut Virgillito, Chiara aut Akiner, Mustafa aut Balatsos, Georgios aut Bender, Christelle aut Besnard, Gilles aut Bravo-Barriga, Daniel aut Bueno-Mari, Rubén aut Collantes, Francisco aut Delacour-Estrella, Sarah aut Dikolli, Enkelejda aut Falcuta, Elena aut Flacio, Eleonora aut García-Pérez, Ana L. aut Kalan, Katja aut Kavran, Mihaela aut L’Ambert, Gregory aut Lia, Riccardo P. aut Marabuto, Eduardo aut Medialdea, Raquel aut Melero-Alcibar, Rosario aut Michaelakis, Antonios aut Mihalca, Andrei aut Mikov, Ognyan aut Miranda, Miguel A. aut Müller, Pie aut Otranto, Domenico aut Pajovic, Igor aut Petric, Dusan aut Rebelo, Maria Teresa aut Robert, Vincent aut Rogozi, Elton aut Tello, Ana aut Zitko, Toni aut Schaffner, Francis aut Pinto, Joao aut della Torre, Alessandra aut Enthalten in Parasites & vectors London : BioMed Central, 2008 15(2022), 1 vom: 05. Aug. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:15 year:2022 number:1 day:05 month:08 https://dx.doi.org/10.1186/s13071-022-05407-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 1 05 08 |
allfieldsGer |
10.1186/s13071-022-05407-3 doi (DE-627)SPR050905147 (SPR)s13071-022-05407-3-e DE-627 ger DE-627 rakwb eng Pichler, Verena verfasserin aut Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. Methods Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. Results The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. Conclusions The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities. Graphical Abstract Mosquito (dpeaa)DE-He213 Insecticide resistance (dpeaa)DE-He213 Kdr (dpeaa)DE-He213 Europe (dpeaa)DE-He213 Integrated vector management (dpeaa)DE-He213 Arbovirus vector (dpeaa)DE-He213 Vector control (dpeaa)DE-He213 Caputo, Beniamino aut Valadas, Vera aut Micocci, Martina aut Horvath, Cintia aut Virgillito, Chiara aut Akiner, Mustafa aut Balatsos, Georgios aut Bender, Christelle aut Besnard, Gilles aut Bravo-Barriga, Daniel aut Bueno-Mari, Rubén aut Collantes, Francisco aut Delacour-Estrella, Sarah aut Dikolli, Enkelejda aut Falcuta, Elena aut Flacio, Eleonora aut García-Pérez, Ana L. aut Kalan, Katja aut Kavran, Mihaela aut L’Ambert, Gregory aut Lia, Riccardo P. aut Marabuto, Eduardo aut Medialdea, Raquel aut Melero-Alcibar, Rosario aut Michaelakis, Antonios aut Mihalca, Andrei aut Mikov, Ognyan aut Miranda, Miguel A. aut Müller, Pie aut Otranto, Domenico aut Pajovic, Igor aut Petric, Dusan aut Rebelo, Maria Teresa aut Robert, Vincent aut Rogozi, Elton aut Tello, Ana aut Zitko, Toni aut Schaffner, Francis aut Pinto, Joao aut della Torre, Alessandra aut Enthalten in Parasites & vectors London : BioMed Central, 2008 15(2022), 1 vom: 05. Aug. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:15 year:2022 number:1 day:05 month:08 https://dx.doi.org/10.1186/s13071-022-05407-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 1 05 08 |
allfieldsSound |
10.1186/s13071-022-05407-3 doi (DE-627)SPR050905147 (SPR)s13071-022-05407-3-e DE-627 ger DE-627 rakwb eng Pichler, Verena verfasserin aut Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. Methods Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. Results The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. Conclusions The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities. Graphical Abstract Mosquito (dpeaa)DE-He213 Insecticide resistance (dpeaa)DE-He213 Kdr (dpeaa)DE-He213 Europe (dpeaa)DE-He213 Integrated vector management (dpeaa)DE-He213 Arbovirus vector (dpeaa)DE-He213 Vector control (dpeaa)DE-He213 Caputo, Beniamino aut Valadas, Vera aut Micocci, Martina aut Horvath, Cintia aut Virgillito, Chiara aut Akiner, Mustafa aut Balatsos, Georgios aut Bender, Christelle aut Besnard, Gilles aut Bravo-Barriga, Daniel aut Bueno-Mari, Rubén aut Collantes, Francisco aut Delacour-Estrella, Sarah aut Dikolli, Enkelejda aut Falcuta, Elena aut Flacio, Eleonora aut García-Pérez, Ana L. aut Kalan, Katja aut Kavran, Mihaela aut L’Ambert, Gregory aut Lia, Riccardo P. aut Marabuto, Eduardo aut Medialdea, Raquel aut Melero-Alcibar, Rosario aut Michaelakis, Antonios aut Mihalca, Andrei aut Mikov, Ognyan aut Miranda, Miguel A. aut Müller, Pie aut Otranto, Domenico aut Pajovic, Igor aut Petric, Dusan aut Rebelo, Maria Teresa aut Robert, Vincent aut Rogozi, Elton aut Tello, Ana aut Zitko, Toni aut Schaffner, Francis aut Pinto, Joao aut della Torre, Alessandra aut Enthalten in Parasites & vectors London : BioMed Central, 2008 15(2022), 1 vom: 05. Aug. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:15 year:2022 number:1 day:05 month:08 https://dx.doi.org/10.1186/s13071-022-05407-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 1 05 08 |
language |
English |
source |
Enthalten in Parasites & vectors 15(2022), 1 vom: 05. Aug. volume:15 year:2022 number:1 day:05 month:08 |
sourceStr |
Enthalten in Parasites & vectors 15(2022), 1 vom: 05. Aug. volume:15 year:2022 number:1 day:05 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mosquito Insecticide resistance Kdr Europe Integrated vector management Arbovirus vector Vector control |
isfreeaccess_bool |
true |
container_title |
Parasites & vectors |
authorswithroles_txt_mv |
Pichler, Verena @@aut@@ Caputo, Beniamino @@aut@@ Valadas, Vera @@aut@@ Micocci, Martina @@aut@@ Horvath, Cintia @@aut@@ Virgillito, Chiara @@aut@@ Akiner, Mustafa @@aut@@ Balatsos, Georgios @@aut@@ Bender, Christelle @@aut@@ Besnard, Gilles @@aut@@ Bravo-Barriga, Daniel @@aut@@ Bueno-Mari, Rubén @@aut@@ Collantes, Francisco @@aut@@ Delacour-Estrella, Sarah @@aut@@ Dikolli, Enkelejda @@aut@@ Falcuta, Elena @@aut@@ Flacio, Eleonora @@aut@@ García-Pérez, Ana L. @@aut@@ Kalan, Katja @@aut@@ Kavran, Mihaela @@aut@@ L’Ambert, Gregory @@aut@@ Lia, Riccardo P. @@aut@@ Marabuto, Eduardo @@aut@@ Medialdea, Raquel @@aut@@ Melero-Alcibar, Rosario @@aut@@ Michaelakis, Antonios @@aut@@ Mihalca, Andrei @@aut@@ Mikov, Ognyan @@aut@@ Miranda, Miguel A. @@aut@@ Müller, Pie @@aut@@ Otranto, Domenico @@aut@@ Pajovic, Igor @@aut@@ Petric, Dusan @@aut@@ Rebelo, Maria Teresa @@aut@@ Robert, Vincent @@aut@@ Rogozi, Elton @@aut@@ Tello, Ana @@aut@@ Zitko, Toni @@aut@@ Schaffner, Francis @@aut@@ Pinto, Joao @@aut@@ della Torre, Alessandra @@aut@@ |
publishDateDaySort_date |
2022-08-05T00:00:00Z |
hierarchy_top_id |
558690076 |
id |
SPR050905147 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR050905147</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509104830.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13071-022-05407-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050905147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13071-022-05407-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pichler, Verena</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. Methods Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. Results The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. Conclusions The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mosquito</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insecticide resistance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kdr</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Europe</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated vector management</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arbovirus vector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Caputo, Beniamino</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valadas, Vera</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Micocci, Martina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horvath, Cintia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Virgillito, Chiara</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akiner, Mustafa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balatsos, Georgios</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bender, Christelle</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Besnard, Gilles</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bravo-Barriga, Daniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bueno-Mari, Rubén</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Collantes, Francisco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delacour-Estrella, Sarah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dikolli, Enkelejda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Falcuta, Elena</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flacio, Eleonora</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">García-Pérez, Ana L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kalan, Katja</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kavran, Mihaela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">L’Ambert, Gregory</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lia, Riccardo P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marabuto, Eduardo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medialdea, Raquel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Melero-Alcibar, Rosario</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michaelakis, Antonios</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mihalca, Andrei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mikov, Ognyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miranda, Miguel A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Müller, Pie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Otranto, Domenico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pajovic, Igor</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petric, Dusan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rebelo, Maria Teresa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robert, Vincent</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogozi, Elton</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tello, Ana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zitko, Toni</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schaffner, Francis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pinto, Joao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">della Torre, Alessandra</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">15(2022), 1 vom: 05. Aug.</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13071-022-05407-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Pichler, Verena |
spellingShingle |
Pichler, Verena misc Mosquito misc Insecticide resistance misc Kdr misc Europe misc Integrated vector management misc Arbovirus vector misc Vector control Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe |
authorStr |
Pichler, Verena |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)558690076 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1756-3305 |
topic_title |
Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe Mosquito (dpeaa)DE-He213 Insecticide resistance (dpeaa)DE-He213 Kdr (dpeaa)DE-He213 Europe (dpeaa)DE-He213 Integrated vector management (dpeaa)DE-He213 Arbovirus vector (dpeaa)DE-He213 Vector control (dpeaa)DE-He213 |
topic |
misc Mosquito misc Insecticide resistance misc Kdr misc Europe misc Integrated vector management misc Arbovirus vector misc Vector control |
topic_unstemmed |
misc Mosquito misc Insecticide resistance misc Kdr misc Europe misc Integrated vector management misc Arbovirus vector misc Vector control |
topic_browse |
misc Mosquito misc Insecticide resistance misc Kdr misc Europe misc Integrated vector management misc Arbovirus vector misc Vector control |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Parasites & vectors |
hierarchy_parent_id |
558690076 |
hierarchy_top_title |
Parasites & vectors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)558690076 (DE-600)2409480-8 |
title |
Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe |
ctrlnum |
(DE-627)SPR050905147 (SPR)s13071-022-05407-3-e |
title_full |
Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe |
author_sort |
Pichler, Verena |
journal |
Parasites & vectors |
journalStr |
Parasites & vectors |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Pichler, Verena Caputo, Beniamino Valadas, Vera Micocci, Martina Horvath, Cintia Virgillito, Chiara Akiner, Mustafa Balatsos, Georgios Bender, Christelle Besnard, Gilles Bravo-Barriga, Daniel Bueno-Mari, Rubén Collantes, Francisco Delacour-Estrella, Sarah Dikolli, Enkelejda Falcuta, Elena Flacio, Eleonora García-Pérez, Ana L. Kalan, Katja Kavran, Mihaela L’Ambert, Gregory Lia, Riccardo P. Marabuto, Eduardo Medialdea, Raquel Melero-Alcibar, Rosario Michaelakis, Antonios Mihalca, Andrei Mikov, Ognyan Miranda, Miguel A. Müller, Pie Otranto, Domenico Pajovic, Igor Petric, Dusan Rebelo, Maria Teresa Robert, Vincent Rogozi, Elton Tello, Ana Zitko, Toni Schaffner, Francis Pinto, Joao della Torre, Alessandra |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Pichler, Verena |
doi_str_mv |
10.1186/s13071-022-05407-3 |
title_sort |
geographic distribution of the v1016g knockdown resistance mutation in aedes albopictus: a warning bell for europe |
title_auth |
Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe |
abstract |
Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. Methods Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. Results The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. Conclusions The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities. Graphical Abstract © The Author(s) 2022 |
abstractGer |
Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. Methods Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. Results The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. Conclusions The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities. Graphical Abstract © The Author(s) 2022 |
abstract_unstemmed |
Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. Methods Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. Results The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. Conclusions The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities. Graphical Abstract © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe |
url |
https://dx.doi.org/10.1186/s13071-022-05407-3 |
remote_bool |
true |
author2 |
Caputo, Beniamino Valadas, Vera Micocci, Martina Horvath, Cintia Virgillito, Chiara Akiner, Mustafa Balatsos, Georgios Bender, Christelle Besnard, Gilles Bravo-Barriga, Daniel Bueno-Mari, Rubén Collantes, Francisco Delacour-Estrella, Sarah Dikolli, Enkelejda Falcuta, Elena Flacio, Eleonora García-Pérez, Ana L. Kalan, Katja Kavran, Mihaela L’Ambert, Gregory Lia, Riccardo P. Marabuto, Eduardo Medialdea, Raquel Melero-Alcibar, Rosario Michaelakis, Antonios Mihalca, Andrei Mikov, Ognyan Miranda, Miguel A. Müller, Pie Otranto, Domenico Pajovic, Igor Petric, Dusan Rebelo, Maria Teresa Robert, Vincent Rogozi, Elton Tello, Ana Zitko, Toni Schaffner, Francis Pinto, Joao della Torre, Alessandra |
author2Str |
Caputo, Beniamino Valadas, Vera Micocci, Martina Horvath, Cintia Virgillito, Chiara Akiner, Mustafa Balatsos, Georgios Bender, Christelle Besnard, Gilles Bravo-Barriga, Daniel Bueno-Mari, Rubén Collantes, Francisco Delacour-Estrella, Sarah Dikolli, Enkelejda Falcuta, Elena Flacio, Eleonora García-Pérez, Ana L. Kalan, Katja Kavran, Mihaela L’Ambert, Gregory Lia, Riccardo P. Marabuto, Eduardo Medialdea, Raquel Melero-Alcibar, Rosario Michaelakis, Antonios Mihalca, Andrei Mikov, Ognyan Miranda, Miguel A. Müller, Pie Otranto, Domenico Pajovic, Igor Petric, Dusan Rebelo, Maria Teresa Robert, Vincent Rogozi, Elton Tello, Ana Zitko, Toni Schaffner, Francis Pinto, Joao della Torre, Alessandra |
ppnlink |
558690076 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13071-022-05407-3 |
up_date |
2024-07-03T18:32:30.386Z |
_version_ |
1803583802980696064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR050905147</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509104830.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13071-022-05407-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR050905147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13071-022-05407-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pichler, Verena</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geographic distribution of the V1016G knockdown resistance mutation in Aedes albopictus: a warning bell for Europe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. Methods Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. Results The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. Conclusions The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mosquito</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insecticide resistance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kdr</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Europe</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated vector management</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arbovirus vector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Caputo, Beniamino</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valadas, Vera</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Micocci, Martina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horvath, Cintia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Virgillito, Chiara</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Akiner, Mustafa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balatsos, Georgios</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bender, Christelle</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Besnard, Gilles</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bravo-Barriga, Daniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bueno-Mari, Rubén</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Collantes, Francisco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delacour-Estrella, Sarah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dikolli, Enkelejda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Falcuta, Elena</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flacio, Eleonora</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">García-Pérez, Ana L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kalan, Katja</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kavran, Mihaela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">L’Ambert, Gregory</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lia, Riccardo P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marabuto, Eduardo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medialdea, Raquel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Melero-Alcibar, Rosario</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Michaelakis, Antonios</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mihalca, Andrei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mikov, Ognyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miranda, Miguel A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Müller, Pie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Otranto, Domenico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pajovic, Igor</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petric, Dusan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rebelo, Maria Teresa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robert, Vincent</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rogozi, Elton</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tello, Ana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zitko, Toni</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schaffner, Francis</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pinto, Joao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">della Torre, Alessandra</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">15(2022), 1 vom: 05. Aug.</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13071-022-05407-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.400983 |