Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity
Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we emp...
Ausführliche Beschreibung
Autor*in: |
Liao, Yue [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Asheville, NC : Science in China Press, 1995, 65(2022), 10 vom: 06. Sept., Seite 1985-1993 |
---|---|
Übergeordnetes Werk: |
volume:65 ; year:2022 ; number:10 ; day:06 ; month:09 ; pages:1985-1993 |
Links: |
---|
DOI / URN: |
10.1007/s11426-022-1330-y |
---|
Katalog-ID: |
SPR051041707 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR051041707 | ||
003 | DE-627 | ||
005 | 20230509113228.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11426-022-1330-y |2 doi | |
035 | |a (DE-627)SPR051041707 | ||
035 | |a (SPR)s11426-022-1330-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Liao, Yue |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 | ||
520 | |a Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we employ a facile enzyme-initiated radical polymerization to self-anchor multienzyme in cell-like hydrogels with mesoscale compartments. The dynamic assembly of glucose oxidase/cytochrome c (GOx/Cyt c) with methacrylate-modified hyaluronic acid can form nanoaggregates, where only the bound enzyme pairs with the adjacent position can catalyze the polymerization to compartmentalize multienzymes within hydrogel. Consequently, the cascade enzymes within hydrogel display 33.9 times higher activity compared to free enzymes, as well as excellent thermostability and multiple recyclability. The mechanism study indicates that the compartmental effect of the hydrogel and the anchoring effect of Cyt c synergistically enhance GOx/Cyt c activity. According to the density functional theory (DFT) calculation, Cyt c activity increment originates from its ligand changes of Fe(III) porphyrin, which has a smaller energy barrier of the catalytic reaction. This study provides a promising strategy for autonomous colocalization of multienzyme in biocompatible hydrogels which can be potentially applied in cascade enzyme induced catalysis applications. | ||
650 | 4 | |a hydrogel |7 (dpeaa)DE-He213 | |
650 | 4 | |a cascade enzyme |7 (dpeaa)DE-He213 | |
650 | 4 | |a enzymatic polymerization |7 (dpeaa)DE-He213 | |
650 | 4 | |a compartmentalization |7 (dpeaa)DE-He213 | |
650 | 4 | |a superactivity |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Xia |4 aut | |
700 | 1 | |a Shen, Hongdou |4 aut | |
700 | 1 | |a Tai, Ziyang |4 aut | |
700 | 1 | |a Wang, Qigang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Asheville, NC : Science in China Press, 1995 |g 65(2022), 10 vom: 06. Sept., Seite 1985-1993 |w (DE-627)327310405 |w (DE-600)2043454-6 |x 1862-2771 |7 nnns |
773 | 1 | 8 | |g volume:65 |g year:2022 |g number:10 |g day:06 |g month:09 |g pages:1985-1993 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11426-022-1330-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 65 |j 2022 |e 10 |b 06 |c 09 |h 1985-1993 |
author_variant |
y l yl x w xw h s hs z t zt q w qw |
---|---|
matchkey_str |
article:18622771:2022----::yaiasmladictlsseetdeainnoslcmatetlzd |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11426-022-1330-y doi (DE-627)SPR051041707 (SPR)s11426-022-1330-y-e DE-627 ger DE-627 rakwb eng Liao, Yue verfasserin aut Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we employ a facile enzyme-initiated radical polymerization to self-anchor multienzyme in cell-like hydrogels with mesoscale compartments. The dynamic assembly of glucose oxidase/cytochrome c (GOx/Cyt c) with methacrylate-modified hyaluronic acid can form nanoaggregates, where only the bound enzyme pairs with the adjacent position can catalyze the polymerization to compartmentalize multienzymes within hydrogel. Consequently, the cascade enzymes within hydrogel display 33.9 times higher activity compared to free enzymes, as well as excellent thermostability and multiple recyclability. The mechanism study indicates that the compartmental effect of the hydrogel and the anchoring effect of Cyt c synergistically enhance GOx/Cyt c activity. According to the density functional theory (DFT) calculation, Cyt c activity increment originates from its ligand changes of Fe(III) porphyrin, which has a smaller energy barrier of the catalytic reaction. This study provides a promising strategy for autonomous colocalization of multienzyme in biocompatible hydrogels which can be potentially applied in cascade enzyme induced catalysis applications. hydrogel (dpeaa)DE-He213 cascade enzyme (dpeaa)DE-He213 enzymatic polymerization (dpeaa)DE-He213 compartmentalization (dpeaa)DE-He213 superactivity (dpeaa)DE-He213 Wang, Xia aut Shen, Hongdou aut Tai, Ziyang aut Wang, Qigang aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 65(2022), 10 vom: 06. Sept., Seite 1985-1993 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:65 year:2022 number:10 day:06 month:09 pages:1985-1993 https://dx.doi.org/10.1007/s11426-022-1330-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 10 06 09 1985-1993 |
spelling |
10.1007/s11426-022-1330-y doi (DE-627)SPR051041707 (SPR)s11426-022-1330-y-e DE-627 ger DE-627 rakwb eng Liao, Yue verfasserin aut Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we employ a facile enzyme-initiated radical polymerization to self-anchor multienzyme in cell-like hydrogels with mesoscale compartments. The dynamic assembly of glucose oxidase/cytochrome c (GOx/Cyt c) with methacrylate-modified hyaluronic acid can form nanoaggregates, where only the bound enzyme pairs with the adjacent position can catalyze the polymerization to compartmentalize multienzymes within hydrogel. Consequently, the cascade enzymes within hydrogel display 33.9 times higher activity compared to free enzymes, as well as excellent thermostability and multiple recyclability. The mechanism study indicates that the compartmental effect of the hydrogel and the anchoring effect of Cyt c synergistically enhance GOx/Cyt c activity. According to the density functional theory (DFT) calculation, Cyt c activity increment originates from its ligand changes of Fe(III) porphyrin, which has a smaller energy barrier of the catalytic reaction. This study provides a promising strategy for autonomous colocalization of multienzyme in biocompatible hydrogels which can be potentially applied in cascade enzyme induced catalysis applications. hydrogel (dpeaa)DE-He213 cascade enzyme (dpeaa)DE-He213 enzymatic polymerization (dpeaa)DE-He213 compartmentalization (dpeaa)DE-He213 superactivity (dpeaa)DE-He213 Wang, Xia aut Shen, Hongdou aut Tai, Ziyang aut Wang, Qigang aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 65(2022), 10 vom: 06. Sept., Seite 1985-1993 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:65 year:2022 number:10 day:06 month:09 pages:1985-1993 https://dx.doi.org/10.1007/s11426-022-1330-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 10 06 09 1985-1993 |
allfields_unstemmed |
10.1007/s11426-022-1330-y doi (DE-627)SPR051041707 (SPR)s11426-022-1330-y-e DE-627 ger DE-627 rakwb eng Liao, Yue verfasserin aut Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we employ a facile enzyme-initiated radical polymerization to self-anchor multienzyme in cell-like hydrogels with mesoscale compartments. The dynamic assembly of glucose oxidase/cytochrome c (GOx/Cyt c) with methacrylate-modified hyaluronic acid can form nanoaggregates, where only the bound enzyme pairs with the adjacent position can catalyze the polymerization to compartmentalize multienzymes within hydrogel. Consequently, the cascade enzymes within hydrogel display 33.9 times higher activity compared to free enzymes, as well as excellent thermostability and multiple recyclability. The mechanism study indicates that the compartmental effect of the hydrogel and the anchoring effect of Cyt c synergistically enhance GOx/Cyt c activity. According to the density functional theory (DFT) calculation, Cyt c activity increment originates from its ligand changes of Fe(III) porphyrin, which has a smaller energy barrier of the catalytic reaction. This study provides a promising strategy for autonomous colocalization of multienzyme in biocompatible hydrogels which can be potentially applied in cascade enzyme induced catalysis applications. hydrogel (dpeaa)DE-He213 cascade enzyme (dpeaa)DE-He213 enzymatic polymerization (dpeaa)DE-He213 compartmentalization (dpeaa)DE-He213 superactivity (dpeaa)DE-He213 Wang, Xia aut Shen, Hongdou aut Tai, Ziyang aut Wang, Qigang aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 65(2022), 10 vom: 06. Sept., Seite 1985-1993 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:65 year:2022 number:10 day:06 month:09 pages:1985-1993 https://dx.doi.org/10.1007/s11426-022-1330-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 10 06 09 1985-1993 |
allfieldsGer |
10.1007/s11426-022-1330-y doi (DE-627)SPR051041707 (SPR)s11426-022-1330-y-e DE-627 ger DE-627 rakwb eng Liao, Yue verfasserin aut Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we employ a facile enzyme-initiated radical polymerization to self-anchor multienzyme in cell-like hydrogels with mesoscale compartments. The dynamic assembly of glucose oxidase/cytochrome c (GOx/Cyt c) with methacrylate-modified hyaluronic acid can form nanoaggregates, where only the bound enzyme pairs with the adjacent position can catalyze the polymerization to compartmentalize multienzymes within hydrogel. Consequently, the cascade enzymes within hydrogel display 33.9 times higher activity compared to free enzymes, as well as excellent thermostability and multiple recyclability. The mechanism study indicates that the compartmental effect of the hydrogel and the anchoring effect of Cyt c synergistically enhance GOx/Cyt c activity. According to the density functional theory (DFT) calculation, Cyt c activity increment originates from its ligand changes of Fe(III) porphyrin, which has a smaller energy barrier of the catalytic reaction. This study provides a promising strategy for autonomous colocalization of multienzyme in biocompatible hydrogels which can be potentially applied in cascade enzyme induced catalysis applications. hydrogel (dpeaa)DE-He213 cascade enzyme (dpeaa)DE-He213 enzymatic polymerization (dpeaa)DE-He213 compartmentalization (dpeaa)DE-He213 superactivity (dpeaa)DE-He213 Wang, Xia aut Shen, Hongdou aut Tai, Ziyang aut Wang, Qigang aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 65(2022), 10 vom: 06. Sept., Seite 1985-1993 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:65 year:2022 number:10 day:06 month:09 pages:1985-1993 https://dx.doi.org/10.1007/s11426-022-1330-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 10 06 09 1985-1993 |
allfieldsSound |
10.1007/s11426-022-1330-y doi (DE-627)SPR051041707 (SPR)s11426-022-1330-y-e DE-627 ger DE-627 rakwb eng Liao, Yue verfasserin aut Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we employ a facile enzyme-initiated radical polymerization to self-anchor multienzyme in cell-like hydrogels with mesoscale compartments. The dynamic assembly of glucose oxidase/cytochrome c (GOx/Cyt c) with methacrylate-modified hyaluronic acid can form nanoaggregates, where only the bound enzyme pairs with the adjacent position can catalyze the polymerization to compartmentalize multienzymes within hydrogel. Consequently, the cascade enzymes within hydrogel display 33.9 times higher activity compared to free enzymes, as well as excellent thermostability and multiple recyclability. The mechanism study indicates that the compartmental effect of the hydrogel and the anchoring effect of Cyt c synergistically enhance GOx/Cyt c activity. According to the density functional theory (DFT) calculation, Cyt c activity increment originates from its ligand changes of Fe(III) porphyrin, which has a smaller energy barrier of the catalytic reaction. This study provides a promising strategy for autonomous colocalization of multienzyme in biocompatible hydrogels which can be potentially applied in cascade enzyme induced catalysis applications. hydrogel (dpeaa)DE-He213 cascade enzyme (dpeaa)DE-He213 enzymatic polymerization (dpeaa)DE-He213 compartmentalization (dpeaa)DE-He213 superactivity (dpeaa)DE-He213 Wang, Xia aut Shen, Hongdou aut Tai, Ziyang aut Wang, Qigang aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 65(2022), 10 vom: 06. Sept., Seite 1985-1993 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:65 year:2022 number:10 day:06 month:09 pages:1985-1993 https://dx.doi.org/10.1007/s11426-022-1330-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 65 2022 10 06 09 1985-1993 |
language |
English |
source |
Enthalten in Science in China 65(2022), 10 vom: 06. Sept., Seite 1985-1993 volume:65 year:2022 number:10 day:06 month:09 pages:1985-1993 |
sourceStr |
Enthalten in Science in China 65(2022), 10 vom: 06. Sept., Seite 1985-1993 volume:65 year:2022 number:10 day:06 month:09 pages:1985-1993 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
hydrogel cascade enzyme enzymatic polymerization compartmentalization superactivity |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Liao, Yue @@aut@@ Wang, Xia @@aut@@ Shen, Hongdou @@aut@@ Tai, Ziyang @@aut@@ Wang, Qigang @@aut@@ |
publishDateDaySort_date |
2022-09-06T00:00:00Z |
hierarchy_top_id |
327310405 |
id |
SPR051041707 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051041707</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509113228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11426-022-1330-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051041707</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11426-022-1330-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liao, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we employ a facile enzyme-initiated radical polymerization to self-anchor multienzyme in cell-like hydrogels with mesoscale compartments. The dynamic assembly of glucose oxidase/cytochrome c (GOx/Cyt c) with methacrylate-modified hyaluronic acid can form nanoaggregates, where only the bound enzyme pairs with the adjacent position can catalyze the polymerization to compartmentalize multienzymes within hydrogel. Consequently, the cascade enzymes within hydrogel display 33.9 times higher activity compared to free enzymes, as well as excellent thermostability and multiple recyclability. The mechanism study indicates that the compartmental effect of the hydrogel and the anchoring effect of Cyt c synergistically enhance GOx/Cyt c activity. According to the density functional theory (DFT) calculation, Cyt c activity increment originates from its ligand changes of Fe(III) porphyrin, which has a smaller energy barrier of the catalytic reaction. This study provides a promising strategy for autonomous colocalization of multienzyme in biocompatible hydrogels which can be potentially applied in cascade enzyme induced catalysis applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cascade enzyme</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enzymatic polymerization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compartmentalization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superactivity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Hongdou</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tai, Ziyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qigang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">65(2022), 10 vom: 06. Sept., Seite 1985-1993</subfield><subfield code="w">(DE-627)327310405</subfield><subfield code="w">(DE-600)2043454-6</subfield><subfield code="x">1862-2771</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10</subfield><subfield code="g">day:06</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1985-1993</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11426-022-1330-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2022</subfield><subfield code="e">10</subfield><subfield code="b">06</subfield><subfield code="c">09</subfield><subfield code="h">1985-1993</subfield></datafield></record></collection>
|
author |
Liao, Yue |
spellingShingle |
Liao, Yue misc hydrogel misc cascade enzyme misc enzymatic polymerization misc compartmentalization misc superactivity Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity |
authorStr |
Liao, Yue |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)327310405 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2771 |
topic_title |
Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity hydrogel (dpeaa)DE-He213 cascade enzyme (dpeaa)DE-He213 enzymatic polymerization (dpeaa)DE-He213 compartmentalization (dpeaa)DE-He213 superactivity (dpeaa)DE-He213 |
topic |
misc hydrogel misc cascade enzyme misc enzymatic polymerization misc compartmentalization misc superactivity |
topic_unstemmed |
misc hydrogel misc cascade enzyme misc enzymatic polymerization misc compartmentalization misc superactivity |
topic_browse |
misc hydrogel misc cascade enzyme misc enzymatic polymerization misc compartmentalization misc superactivity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
327310405 |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)327310405 (DE-600)2043454-6 |
title |
Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity |
ctrlnum |
(DE-627)SPR051041707 (SPR)s11426-022-1330-y-e |
title_full |
Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity |
author_sort |
Liao, Yue |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1985 |
author_browse |
Liao, Yue Wang, Xia Shen, Hongdou Tai, Ziyang Wang, Qigang |
container_volume |
65 |
format_se |
Elektronische Aufsätze |
author-letter |
Liao, Yue |
doi_str_mv |
10.1007/s11426-022-1330-y |
title_sort |
dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity |
title_auth |
Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity |
abstract |
Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we employ a facile enzyme-initiated radical polymerization to self-anchor multienzyme in cell-like hydrogels with mesoscale compartments. The dynamic assembly of glucose oxidase/cytochrome c (GOx/Cyt c) with methacrylate-modified hyaluronic acid can form nanoaggregates, where only the bound enzyme pairs with the adjacent position can catalyze the polymerization to compartmentalize multienzymes within hydrogel. Consequently, the cascade enzymes within hydrogel display 33.9 times higher activity compared to free enzymes, as well as excellent thermostability and multiple recyclability. The mechanism study indicates that the compartmental effect of the hydrogel and the anchoring effect of Cyt c synergistically enhance GOx/Cyt c activity. According to the density functional theory (DFT) calculation, Cyt c activity increment originates from its ligand changes of Fe(III) porphyrin, which has a smaller energy barrier of the catalytic reaction. This study provides a promising strategy for autonomous colocalization of multienzyme in biocompatible hydrogels which can be potentially applied in cascade enzyme induced catalysis applications. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstractGer |
Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we employ a facile enzyme-initiated radical polymerization to self-anchor multienzyme in cell-like hydrogels with mesoscale compartments. The dynamic assembly of glucose oxidase/cytochrome c (GOx/Cyt c) with methacrylate-modified hyaluronic acid can form nanoaggregates, where only the bound enzyme pairs with the adjacent position can catalyze the polymerization to compartmentalize multienzymes within hydrogel. Consequently, the cascade enzymes within hydrogel display 33.9 times higher activity compared to free enzymes, as well as excellent thermostability and multiple recyclability. The mechanism study indicates that the compartmental effect of the hydrogel and the anchoring effect of Cyt c synergistically enhance GOx/Cyt c activity. According to the density functional theory (DFT) calculation, Cyt c activity increment originates from its ligand changes of Fe(III) porphyrin, which has a smaller energy barrier of the catalytic reaction. This study provides a promising strategy for autonomous colocalization of multienzyme in biocompatible hydrogels which can be potentially applied in cascade enzyme induced catalysis applications. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we employ a facile enzyme-initiated radical polymerization to self-anchor multienzyme in cell-like hydrogels with mesoscale compartments. The dynamic assembly of glucose oxidase/cytochrome c (GOx/Cyt c) with methacrylate-modified hyaluronic acid can form nanoaggregates, where only the bound enzyme pairs with the adjacent position can catalyze the polymerization to compartmentalize multienzymes within hydrogel. Consequently, the cascade enzymes within hydrogel display 33.9 times higher activity compared to free enzymes, as well as excellent thermostability and multiple recyclability. The mechanism study indicates that the compartmental effect of the hydrogel and the anchoring effect of Cyt c synergistically enhance GOx/Cyt c activity. According to the density functional theory (DFT) calculation, Cyt c activity increment originates from its ligand changes of Fe(III) porphyrin, which has a smaller energy barrier of the catalytic reaction. This study provides a promising strategy for autonomous colocalization of multienzyme in biocompatible hydrogels which can be potentially applied in cascade enzyme induced catalysis applications. © Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
10 |
title_short |
Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity |
url |
https://dx.doi.org/10.1007/s11426-022-1330-y |
remote_bool |
true |
author2 |
Wang, Xia Shen, Hongdou Tai, Ziyang Wang, Qigang |
author2Str |
Wang, Xia Shen, Hongdou Tai, Ziyang Wang, Qigang |
ppnlink |
327310405 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11426-022-1330-y |
up_date |
2024-07-03T19:25:10.863Z |
_version_ |
1803587116983123968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051041707</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509113228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11426-022-1330-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051041707</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11426-022-1330-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liao, Yue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamic assembly and biocatalysis-selected gelation endow self-compartmentalized multienzyme superactivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cellular metabolism in multiple organelles utilizes compartmentalized multienzyme efficient catalysis to realize substance metabolism, energy conversion and immune defenses. The convenient and biomimetic design of artificial multienzymes has become an emerging research topic. Herein, we employ a facile enzyme-initiated radical polymerization to self-anchor multienzyme in cell-like hydrogels with mesoscale compartments. The dynamic assembly of glucose oxidase/cytochrome c (GOx/Cyt c) with methacrylate-modified hyaluronic acid can form nanoaggregates, where only the bound enzyme pairs with the adjacent position can catalyze the polymerization to compartmentalize multienzymes within hydrogel. Consequently, the cascade enzymes within hydrogel display 33.9 times higher activity compared to free enzymes, as well as excellent thermostability and multiple recyclability. The mechanism study indicates that the compartmental effect of the hydrogel and the anchoring effect of Cyt c synergistically enhance GOx/Cyt c activity. According to the density functional theory (DFT) calculation, Cyt c activity increment originates from its ligand changes of Fe(III) porphyrin, which has a smaller energy barrier of the catalytic reaction. This study provides a promising strategy for autonomous colocalization of multienzyme in biocompatible hydrogels which can be potentially applied in cascade enzyme induced catalysis applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hydrogel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cascade enzyme</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">enzymatic polymerization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">compartmentalization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superactivity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Hongdou</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tai, Ziyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qigang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">65(2022), 10 vom: 06. Sept., Seite 1985-1993</subfield><subfield code="w">(DE-627)327310405</subfield><subfield code="w">(DE-600)2043454-6</subfield><subfield code="x">1862-2771</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:65</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10</subfield><subfield code="g">day:06</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1985-1993</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11426-022-1330-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">65</subfield><subfield code="j">2022</subfield><subfield code="e">10</subfield><subfield code="b">06</subfield><subfield code="c">09</subfield><subfield code="h">1985-1993</subfield></datafield></record></collection>
|
score |
7.4011736 |