Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction
Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsb...
Ausführliche Beschreibung
Autor*in: |
Schmitz, T. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022. corrected publication 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of translational medicine - London : BioMed Central, 2003, 20(2022), 1 vom: 08. Okt. |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2022 ; number:1 ; day:08 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/s12967-022-03644-9 |
---|
Katalog-ID: |
SPR051047314 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR051047314 | ||
003 | DE-627 | ||
005 | 20230510061027.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12967-022-03644-9 |2 doi | |
035 | |a (DE-627)SPR051047314 | ||
035 | |a (SPR)s12967-022-03644-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Schmitz, T. |e verfasserin |0 (orcid)0000-0002-3619-0438 |4 aut | |
245 | 1 | 0 | |a Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022. corrected publication 2023 | ||
520 | |a Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflammatory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day mortality was investigated. The values of the biomarkers most significantly associated with mortality were standardized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by adding the standardized biomarker score to the standardized GRACE score. Results The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivariable logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the superiority of the combined score over the GARCE score. Conclusions Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarction (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims to provide each patient with tailored therapy. | ||
650 | 4 | |a Inflammatory marker |7 (dpeaa)DE-He213 | |
650 | 4 | |a Myocardial infarction |7 (dpeaa)DE-He213 | |
650 | 4 | |a 28-day mortality |7 (dpeaa)DE-He213 | |
700 | 1 | |a Harmel, E. |4 aut | |
700 | 1 | |a Heier, M. |4 aut | |
700 | 1 | |a Peters, A. |4 aut | |
700 | 1 | |a Linseisen, J. |4 aut | |
700 | 1 | |a Meisinger, C. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of translational medicine |d London : BioMed Central, 2003 |g 20(2022), 1 vom: 08. Okt. |w (DE-627)369084136 |w (DE-600)2118570-0 |x 1479-5876 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2022 |g number:1 |g day:08 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12967-022-03644-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 20 |j 2022 |e 1 |b 08 |c 10 |
author_variant |
t s ts e h eh m h mh a p ap j l jl c m cm |
---|---|
matchkey_str |
article:14795876:2022----::nlmaoylsartisrdcsotemotltiptetwtaa |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s12967-022-03644-9 doi (DE-627)SPR051047314 (SPR)s12967-022-03644-9-e DE-627 ger DE-627 rakwb eng Schmitz, T. verfasserin (orcid)0000-0002-3619-0438 aut Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022. corrected publication 2023 Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflammatory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day mortality was investigated. The values of the biomarkers most significantly associated with mortality were standardized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by adding the standardized biomarker score to the standardized GRACE score. Results The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivariable logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the superiority of the combined score over the GARCE score. Conclusions Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarction (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims to provide each patient with tailored therapy. Inflammatory marker (dpeaa)DE-He213 Myocardial infarction (dpeaa)DE-He213 28-day mortality (dpeaa)DE-He213 Harmel, E. aut Heier, M. aut Peters, A. aut Linseisen, J. aut Meisinger, C. aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 20(2022), 1 vom: 08. Okt. (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:20 year:2022 number:1 day:08 month:10 https://dx.doi.org/10.1186/s12967-022-03644-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 08 10 |
spelling |
10.1186/s12967-022-03644-9 doi (DE-627)SPR051047314 (SPR)s12967-022-03644-9-e DE-627 ger DE-627 rakwb eng Schmitz, T. verfasserin (orcid)0000-0002-3619-0438 aut Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022. corrected publication 2023 Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflammatory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day mortality was investigated. The values of the biomarkers most significantly associated with mortality were standardized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by adding the standardized biomarker score to the standardized GRACE score. Results The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivariable logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the superiority of the combined score over the GARCE score. Conclusions Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarction (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims to provide each patient with tailored therapy. Inflammatory marker (dpeaa)DE-He213 Myocardial infarction (dpeaa)DE-He213 28-day mortality (dpeaa)DE-He213 Harmel, E. aut Heier, M. aut Peters, A. aut Linseisen, J. aut Meisinger, C. aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 20(2022), 1 vom: 08. Okt. (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:20 year:2022 number:1 day:08 month:10 https://dx.doi.org/10.1186/s12967-022-03644-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 08 10 |
allfields_unstemmed |
10.1186/s12967-022-03644-9 doi (DE-627)SPR051047314 (SPR)s12967-022-03644-9-e DE-627 ger DE-627 rakwb eng Schmitz, T. verfasserin (orcid)0000-0002-3619-0438 aut Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022. corrected publication 2023 Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflammatory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day mortality was investigated. The values of the biomarkers most significantly associated with mortality were standardized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by adding the standardized biomarker score to the standardized GRACE score. Results The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivariable logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the superiority of the combined score over the GARCE score. Conclusions Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarction (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims to provide each patient with tailored therapy. Inflammatory marker (dpeaa)DE-He213 Myocardial infarction (dpeaa)DE-He213 28-day mortality (dpeaa)DE-He213 Harmel, E. aut Heier, M. aut Peters, A. aut Linseisen, J. aut Meisinger, C. aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 20(2022), 1 vom: 08. Okt. (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:20 year:2022 number:1 day:08 month:10 https://dx.doi.org/10.1186/s12967-022-03644-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 08 10 |
allfieldsGer |
10.1186/s12967-022-03644-9 doi (DE-627)SPR051047314 (SPR)s12967-022-03644-9-e DE-627 ger DE-627 rakwb eng Schmitz, T. verfasserin (orcid)0000-0002-3619-0438 aut Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022. corrected publication 2023 Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflammatory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day mortality was investigated. The values of the biomarkers most significantly associated with mortality were standardized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by adding the standardized biomarker score to the standardized GRACE score. Results The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivariable logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the superiority of the combined score over the GARCE score. Conclusions Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarction (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims to provide each patient with tailored therapy. Inflammatory marker (dpeaa)DE-He213 Myocardial infarction (dpeaa)DE-He213 28-day mortality (dpeaa)DE-He213 Harmel, E. aut Heier, M. aut Peters, A. aut Linseisen, J. aut Meisinger, C. aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 20(2022), 1 vom: 08. Okt. (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:20 year:2022 number:1 day:08 month:10 https://dx.doi.org/10.1186/s12967-022-03644-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 08 10 |
allfieldsSound |
10.1186/s12967-022-03644-9 doi (DE-627)SPR051047314 (SPR)s12967-022-03644-9-e DE-627 ger DE-627 rakwb eng Schmitz, T. verfasserin (orcid)0000-0002-3619-0438 aut Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022. corrected publication 2023 Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflammatory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day mortality was investigated. The values of the biomarkers most significantly associated with mortality were standardized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by adding the standardized biomarker score to the standardized GRACE score. Results The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivariable logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the superiority of the combined score over the GARCE score. Conclusions Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarction (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims to provide each patient with tailored therapy. Inflammatory marker (dpeaa)DE-He213 Myocardial infarction (dpeaa)DE-He213 28-day mortality (dpeaa)DE-He213 Harmel, E. aut Heier, M. aut Peters, A. aut Linseisen, J. aut Meisinger, C. aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 20(2022), 1 vom: 08. Okt. (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:20 year:2022 number:1 day:08 month:10 https://dx.doi.org/10.1186/s12967-022-03644-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 20 2022 1 08 10 |
language |
English |
source |
Enthalten in Journal of translational medicine 20(2022), 1 vom: 08. Okt. volume:20 year:2022 number:1 day:08 month:10 |
sourceStr |
Enthalten in Journal of translational medicine 20(2022), 1 vom: 08. Okt. volume:20 year:2022 number:1 day:08 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Inflammatory marker Myocardial infarction 28-day mortality |
isfreeaccess_bool |
true |
container_title |
Journal of translational medicine |
authorswithroles_txt_mv |
Schmitz, T. @@aut@@ Harmel, E. @@aut@@ Heier, M. @@aut@@ Peters, A. @@aut@@ Linseisen, J. @@aut@@ Meisinger, C. @@aut@@ |
publishDateDaySort_date |
2022-10-08T00:00:00Z |
hierarchy_top_id |
369084136 |
id |
SPR051047314 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051047314</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510061027.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12967-022-03644-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051047314</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12967-022-03644-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmitz, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3619-0438</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022. corrected publication 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflammatory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day mortality was investigated. The values of the biomarkers most significantly associated with mortality were standardized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by adding the standardized biomarker score to the standardized GRACE score. Results The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivariable logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the superiority of the combined score over the GARCE score. Conclusions Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarction (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims to provide each patient with tailored therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammatory marker</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Myocardial infarction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">28-day mortality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harmel, E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heier, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peters, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Linseisen, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meisinger, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of translational medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">20(2022), 1 vom: 08. Okt.</subfield><subfield code="w">(DE-627)369084136</subfield><subfield code="w">(DE-600)2118570-0</subfield><subfield code="x">1479-5876</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12967-022-03644-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Schmitz, T. |
spellingShingle |
Schmitz, T. misc Inflammatory marker misc Myocardial infarction misc 28-day mortality Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction |
authorStr |
Schmitz, T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)369084136 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1479-5876 |
topic_title |
Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction Inflammatory marker (dpeaa)DE-He213 Myocardial infarction (dpeaa)DE-He213 28-day mortality (dpeaa)DE-He213 |
topic |
misc Inflammatory marker misc Myocardial infarction misc 28-day mortality |
topic_unstemmed |
misc Inflammatory marker misc Myocardial infarction misc 28-day mortality |
topic_browse |
misc Inflammatory marker misc Myocardial infarction misc 28-day mortality |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of translational medicine |
hierarchy_parent_id |
369084136 |
hierarchy_top_title |
Journal of translational medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)369084136 (DE-600)2118570-0 |
title |
Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction |
ctrlnum |
(DE-627)SPR051047314 (SPR)s12967-022-03644-9-e |
title_full |
Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction |
author_sort |
Schmitz, T. |
journal |
Journal of translational medicine |
journalStr |
Journal of translational medicine |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Schmitz, T. Harmel, E. Heier, M. Peters, A. Linseisen, J. Meisinger, C. |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Schmitz, T. |
doi_str_mv |
10.1186/s12967-022-03644-9 |
normlink |
(ORCID)0000-0002-3619-0438 |
normlink_prefix_str_mv |
(orcid)0000-0002-3619-0438 |
title_sort |
inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction |
title_auth |
Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction |
abstract |
Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflammatory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day mortality was investigated. The values of the biomarkers most significantly associated with mortality were standardized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by adding the standardized biomarker score to the standardized GRACE score. Results The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivariable logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the superiority of the combined score over the GARCE score. Conclusions Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarction (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims to provide each patient with tailored therapy. © The Author(s) 2022. corrected publication 2023 |
abstractGer |
Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflammatory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day mortality was investigated. The values of the biomarkers most significantly associated with mortality were standardized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by adding the standardized biomarker score to the standardized GRACE score. Results The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivariable logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the superiority of the combined score over the GARCE score. Conclusions Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarction (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims to provide each patient with tailored therapy. © The Author(s) 2022. corrected publication 2023 |
abstract_unstemmed |
Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflammatory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day mortality was investigated. The values of the biomarkers most significantly associated with mortality were standardized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by adding the standardized biomarker score to the standardized GRACE score. Results The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivariable logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the superiority of the combined score over the GARCE score. Conclusions Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarction (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims to provide each patient with tailored therapy. © The Author(s) 2022. corrected publication 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction |
url |
https://dx.doi.org/10.1186/s12967-022-03644-9 |
remote_bool |
true |
author2 |
Harmel, E. Heier, M. Peters, A. Linseisen, J. Meisinger, C. |
author2Str |
Harmel, E. Heier, M. Peters, A. Linseisen, J. Meisinger, C. |
ppnlink |
369084136 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12967-022-03644-9 |
up_date |
2024-07-03T19:27:14.395Z |
_version_ |
1803587246523154432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051047314</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510061027.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12967-022-03644-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051047314</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12967-022-03644-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schmitz, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3619-0438</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inflammatory plasma proteins predict short-term mortality in patients with an acute myocardial infarction</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022. corrected publication 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The aim of this study was to investigate the association between inflammatory markers and 28-day mortality in patients with ST-elevation myocardial infarction (STEMI). Methods In 398 STEMI patients recorded between 2009 and 2013 by the population-based Myocardial Infarction Registry Augsburg, 92 protein biomarkers were measured in admission arterial blood samples using the OLINK inflammatory panel. In multivariable-adjusted logistic regression models, the association between each marker and 28-day mortality was investigated. The values of the biomarkers most significantly associated with mortality were standardized and summarized to obtain a prediction score for 28-day mortality. The predictive ability of this biomarker score was compared to the established GRACE score using ROC analysis. Finally, a combined total score was generated by adding the standardized biomarker score to the standardized GRACE score. Results The markers IL-6, IL-8, IL-10, FGF-21, FGF-23, ST1A1, MCP-1, 4E-BP1, and CST5 were most significantly associated with 28-day mortality, each with FDR-adjusted (false discovery rate adjusted) p-values of < 0.01 in the multivariable logistic regression model. In a ROC analysis, the biomarker score and the GRACE score showed comparable predictive ability for 28-day mortality (biomarker score AUC: 0.7859 [CI: 0.6735–0.89], GRACE score AUC: 0.7961 [CI: 0.6965–0.8802]). By combining the biomarker score and the Grace score, the predictive ability improved with an AUC of 0.8305 [CI: 0.7269–0.9187]. A continuous Net Reclassification Improvement (cNRI) of 0.566 (CI: 0.192–0.94, p-value: 0.003) and an Integrated Discrimination Improvement (IDI) of 0.083 ((CI: 0.016–0.149, p-value: 0.015) confirmed the superiority of the combined score over the GARCE score. Conclusions Inflammatory biomarkers may play a significant role in the pathophysiology of acute myocardial infarction (AMI) and AMI-related mortality and might be a promising starting point for personalized medicine, which aims to provide each patient with tailored therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inflammatory marker</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Myocardial infarction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">28-day mortality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harmel, E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heier, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peters, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Linseisen, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meisinger, C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of translational medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">20(2022), 1 vom: 08. Okt.</subfield><subfield code="w">(DE-627)369084136</subfield><subfield code="w">(DE-600)2118570-0</subfield><subfield code="x">1479-5876</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12967-022-03644-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.402815 |