Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L.
Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynth...
Ausführliche Beschreibung
Autor*in: |
Zhu, Xuewen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Microbial cell factories - London : Biomed Central, 2002, 21(2022), 1 vom: 15. Okt. |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2022 ; number:1 ; day:15 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/s12934-022-01933-y |
---|
Katalog-ID: |
SPR051065495 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR051065495 | ||
003 | DE-627 | ||
005 | 20230509113945.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12934-022-01933-y |2 doi | |
035 | |a (DE-627)SPR051065495 | ||
035 | |a (SPR)s12934-022-01933-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhu, Xuewen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. Results In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. Conclusions Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa’s flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids. | ||
650 | 4 | |a Flavonoid metabolic pathway |7 (dpeaa)DE-He213 | |
650 | 4 | |a flavonol |7 (dpeaa)DE-He213 | |
650 | 4 | |a FLS |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gene family |7 (dpeaa)DE-He213 | |
700 | 1 | |a Mi, Yaolei |4 aut | |
700 | 1 | |a Meng, Xiangxiao |4 aut | |
700 | 1 | |a Zhang, Yiming |4 aut | |
700 | 1 | |a Chen, Weiqiang |4 aut | |
700 | 1 | |a Cao, Xue |4 aut | |
700 | 1 | |a Wan, Huihua |4 aut | |
700 | 1 | |a Yang, Wei |4 aut | |
700 | 1 | |a Li, Jun |4 aut | |
700 | 1 | |a Wang, Sifan |4 aut | |
700 | 1 | |a Xu, Zhichao |4 aut | |
700 | 1 | |a Wahab, Atia Tul |4 aut | |
700 | 1 | |a Chen, Shilin |4 aut | |
700 | 1 | |a Sun, Wei |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Microbial cell factories |d London : Biomed Central, 2002 |g 21(2022), 1 vom: 15. Okt. |w (DE-627)355987651 |w (DE-600)2091377-1 |x 1475-2859 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2022 |g number:1 |g day:15 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12934-022-01933-y |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2022 |e 1 |b 15 |c 10 |
author_variant |
x z xz y m ym x m xm y z yz w c wc x c xc h w hw w y wy j l jl s w sw z x zx a t w at atw s c sc w s ws |
---|---|
matchkey_str |
article:14752859:2022----::eoeiedniiainfeezmecdngnsnteaayirlsfw2xguaaeeedndoyeaenovd |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s12934-022-01933-y doi (DE-627)SPR051065495 (SPR)s12934-022-01933-y-e DE-627 ger DE-627 rakwb eng Zhu, Xuewen verfasserin aut Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. Results In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. Conclusions Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa’s flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids. Flavonoid metabolic pathway (dpeaa)DE-He213 flavonol (dpeaa)DE-He213 FLS (dpeaa)DE-He213 Gene family (dpeaa)DE-He213 Mi, Yaolei aut Meng, Xiangxiao aut Zhang, Yiming aut Chen, Weiqiang aut Cao, Xue aut Wan, Huihua aut Yang, Wei aut Li, Jun aut Wang, Sifan aut Xu, Zhichao aut Wahab, Atia Tul aut Chen, Shilin aut Sun, Wei aut Enthalten in Microbial cell factories London : Biomed Central, 2002 21(2022), 1 vom: 15. Okt. (DE-627)355987651 (DE-600)2091377-1 1475-2859 nnns volume:21 year:2022 number:1 day:15 month:10 https://dx.doi.org/10.1186/s12934-022-01933-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2022 1 15 10 |
spelling |
10.1186/s12934-022-01933-y doi (DE-627)SPR051065495 (SPR)s12934-022-01933-y-e DE-627 ger DE-627 rakwb eng Zhu, Xuewen verfasserin aut Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. Results In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. Conclusions Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa’s flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids. Flavonoid metabolic pathway (dpeaa)DE-He213 flavonol (dpeaa)DE-He213 FLS (dpeaa)DE-He213 Gene family (dpeaa)DE-He213 Mi, Yaolei aut Meng, Xiangxiao aut Zhang, Yiming aut Chen, Weiqiang aut Cao, Xue aut Wan, Huihua aut Yang, Wei aut Li, Jun aut Wang, Sifan aut Xu, Zhichao aut Wahab, Atia Tul aut Chen, Shilin aut Sun, Wei aut Enthalten in Microbial cell factories London : Biomed Central, 2002 21(2022), 1 vom: 15. Okt. (DE-627)355987651 (DE-600)2091377-1 1475-2859 nnns volume:21 year:2022 number:1 day:15 month:10 https://dx.doi.org/10.1186/s12934-022-01933-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2022 1 15 10 |
allfields_unstemmed |
10.1186/s12934-022-01933-y doi (DE-627)SPR051065495 (SPR)s12934-022-01933-y-e DE-627 ger DE-627 rakwb eng Zhu, Xuewen verfasserin aut Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. Results In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. Conclusions Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa’s flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids. Flavonoid metabolic pathway (dpeaa)DE-He213 flavonol (dpeaa)DE-He213 FLS (dpeaa)DE-He213 Gene family (dpeaa)DE-He213 Mi, Yaolei aut Meng, Xiangxiao aut Zhang, Yiming aut Chen, Weiqiang aut Cao, Xue aut Wan, Huihua aut Yang, Wei aut Li, Jun aut Wang, Sifan aut Xu, Zhichao aut Wahab, Atia Tul aut Chen, Shilin aut Sun, Wei aut Enthalten in Microbial cell factories London : Biomed Central, 2002 21(2022), 1 vom: 15. Okt. (DE-627)355987651 (DE-600)2091377-1 1475-2859 nnns volume:21 year:2022 number:1 day:15 month:10 https://dx.doi.org/10.1186/s12934-022-01933-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2022 1 15 10 |
allfieldsGer |
10.1186/s12934-022-01933-y doi (DE-627)SPR051065495 (SPR)s12934-022-01933-y-e DE-627 ger DE-627 rakwb eng Zhu, Xuewen verfasserin aut Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. Results In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. Conclusions Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa’s flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids. Flavonoid metabolic pathway (dpeaa)DE-He213 flavonol (dpeaa)DE-He213 FLS (dpeaa)DE-He213 Gene family (dpeaa)DE-He213 Mi, Yaolei aut Meng, Xiangxiao aut Zhang, Yiming aut Chen, Weiqiang aut Cao, Xue aut Wan, Huihua aut Yang, Wei aut Li, Jun aut Wang, Sifan aut Xu, Zhichao aut Wahab, Atia Tul aut Chen, Shilin aut Sun, Wei aut Enthalten in Microbial cell factories London : Biomed Central, 2002 21(2022), 1 vom: 15. Okt. (DE-627)355987651 (DE-600)2091377-1 1475-2859 nnns volume:21 year:2022 number:1 day:15 month:10 https://dx.doi.org/10.1186/s12934-022-01933-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2022 1 15 10 |
allfieldsSound |
10.1186/s12934-022-01933-y doi (DE-627)SPR051065495 (SPR)s12934-022-01933-y-e DE-627 ger DE-627 rakwb eng Zhu, Xuewen verfasserin aut Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. Results In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. Conclusions Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa’s flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids. Flavonoid metabolic pathway (dpeaa)DE-He213 flavonol (dpeaa)DE-He213 FLS (dpeaa)DE-He213 Gene family (dpeaa)DE-He213 Mi, Yaolei aut Meng, Xiangxiao aut Zhang, Yiming aut Chen, Weiqiang aut Cao, Xue aut Wan, Huihua aut Yang, Wei aut Li, Jun aut Wang, Sifan aut Xu, Zhichao aut Wahab, Atia Tul aut Chen, Shilin aut Sun, Wei aut Enthalten in Microbial cell factories London : Biomed Central, 2002 21(2022), 1 vom: 15. Okt. (DE-627)355987651 (DE-600)2091377-1 1475-2859 nnns volume:21 year:2022 number:1 day:15 month:10 https://dx.doi.org/10.1186/s12934-022-01933-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2022 1 15 10 |
language |
English |
source |
Enthalten in Microbial cell factories 21(2022), 1 vom: 15. Okt. volume:21 year:2022 number:1 day:15 month:10 |
sourceStr |
Enthalten in Microbial cell factories 21(2022), 1 vom: 15. Okt. volume:21 year:2022 number:1 day:15 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Flavonoid metabolic pathway flavonol FLS Gene family |
isfreeaccess_bool |
true |
container_title |
Microbial cell factories |
authorswithroles_txt_mv |
Zhu, Xuewen @@aut@@ Mi, Yaolei @@aut@@ Meng, Xiangxiao @@aut@@ Zhang, Yiming @@aut@@ Chen, Weiqiang @@aut@@ Cao, Xue @@aut@@ Wan, Huihua @@aut@@ Yang, Wei @@aut@@ Li, Jun @@aut@@ Wang, Sifan @@aut@@ Xu, Zhichao @@aut@@ Wahab, Atia Tul @@aut@@ Chen, Shilin @@aut@@ Sun, Wei @@aut@@ |
publishDateDaySort_date |
2022-10-15T00:00:00Z |
hierarchy_top_id |
355987651 |
id |
SPR051065495 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051065495</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509113945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12934-022-01933-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051065495</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12934-022-01933-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Xuewen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. Results In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. Conclusions Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa’s flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flavonoid metabolic pathway</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flavonol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FLS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene family</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mi, Yaolei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiangxiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yiming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weiqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Xue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Huihua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Sifan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Zhichao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wahab, Atia Tul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Shilin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microbial cell factories</subfield><subfield code="d">London : Biomed Central, 2002</subfield><subfield code="g">21(2022), 1 vom: 15. Okt.</subfield><subfield code="w">(DE-627)355987651</subfield><subfield code="w">(DE-600)2091377-1</subfield><subfield code="x">1475-2859</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12934-022-01933-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Zhu, Xuewen |
spellingShingle |
Zhu, Xuewen misc Flavonoid metabolic pathway misc flavonol misc FLS misc Gene family Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. |
authorStr |
Zhu, Xuewen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)355987651 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1475-2859 |
topic_title |
Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. Flavonoid metabolic pathway (dpeaa)DE-He213 flavonol (dpeaa)DE-He213 FLS (dpeaa)DE-He213 Gene family (dpeaa)DE-He213 |
topic |
misc Flavonoid metabolic pathway misc flavonol misc FLS misc Gene family |
topic_unstemmed |
misc Flavonoid metabolic pathway misc flavonol misc FLS misc Gene family |
topic_browse |
misc Flavonoid metabolic pathway misc flavonol misc FLS misc Gene family |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Microbial cell factories |
hierarchy_parent_id |
355987651 |
hierarchy_top_title |
Microbial cell factories |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)355987651 (DE-600)2091377-1 |
title |
Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. |
ctrlnum |
(DE-627)SPR051065495 (SPR)s12934-022-01933-y-e |
title_full |
Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. |
author_sort |
Zhu, Xuewen |
journal |
Microbial cell factories |
journalStr |
Microbial cell factories |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Zhu, Xuewen Mi, Yaolei Meng, Xiangxiao Zhang, Yiming Chen, Weiqiang Cao, Xue Wan, Huihua Yang, Wei Li, Jun Wang, Sifan Xu, Zhichao Wahab, Atia Tul Chen, Shilin Sun, Wei |
container_volume |
21 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhu, Xuewen |
doi_str_mv |
10.1186/s12934-022-01933-y |
title_sort |
genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in cannabis sativa l. |
title_auth |
Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. |
abstract |
Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. Results In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. Conclusions Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa’s flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids. © The Author(s) 2022 |
abstractGer |
Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. Results In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. Conclusions Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa’s flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids. © The Author(s) 2022 |
abstract_unstemmed |
Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. Results In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. Conclusions Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa’s flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L. |
url |
https://dx.doi.org/10.1186/s12934-022-01933-y |
remote_bool |
true |
author2 |
Mi, Yaolei Meng, Xiangxiao Zhang, Yiming Chen, Weiqiang Cao, Xue Wan, Huihua Yang, Wei Li, Jun Wang, Sifan Xu, Zhichao Wahab, Atia Tul Chen, Shilin Sun, Wei |
author2Str |
Mi, Yaolei Meng, Xiangxiao Zhang, Yiming Chen, Weiqiang Cao, Xue Wan, Huihua Yang, Wei Li, Jun Wang, Sifan Xu, Zhichao Wahab, Atia Tul Chen, Shilin Sun, Wei |
ppnlink |
355987651 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12934-022-01933-y |
up_date |
2024-07-03T19:33:58.767Z |
_version_ |
1803587670530588672 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051065495</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509113945.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12934-022-01933-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051065495</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12934-022-01933-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Xuewen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome-wide identification of key enzyme-encoding genes and the catalytic roles of two 2-oxoglutarate-dependent dioxygenase involved in flavonoid biosynthesis in Cannabis sativa L.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. Results In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. Conclusions Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa’s flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flavonoid metabolic pathway</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flavonol</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FLS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene family</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mi, Yaolei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Xiangxiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yiming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weiqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Xue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Huihua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Sifan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Zhichao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wahab, Atia Tul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Shilin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Microbial cell factories</subfield><subfield code="d">London : Biomed Central, 2002</subfield><subfield code="g">21(2022), 1 vom: 15. Okt.</subfield><subfield code="w">(DE-627)355987651</subfield><subfield code="w">(DE-600)2091377-1</subfield><subfield code="x">1475-2859</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12934-022-01933-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.4003134 |