A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique
Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its prima...
Ausführliche Beschreibung
Autor*in: |
Vorsino, Adam E. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Parasites & vectors - London : BioMed Central, 2008, 15(2022), 1 vom: 05. Dez. |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:1 ; day:05 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s13071-022-05522-1 |
---|
Katalog-ID: |
SPR051203707 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR051203707 | ||
003 | DE-627 | ||
005 | 20230509121931.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13071-022-05522-1 |2 doi | |
035 | |a (DE-627)SPR051203707 | ||
035 | |a (SPR)s13071-022-05522-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Vorsino, Adam E. |e verfasserin |4 aut | |
245 | 1 | 2 | |a A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract | ||
650 | 4 | |a Sterile insect technique |7 (dpeaa)DE-He213 | |
650 | 4 | |a Incompatible insect technique |7 (dpeaa)DE-He213 | |
650 | 4 | |a Culicid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Infrastructure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cost calculator |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hawaiʻi |7 (dpeaa)DE-He213 | |
700 | 1 | |a Xi, Zhiyong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Parasites & vectors |d London : BioMed Central, 2008 |g 15(2022), 1 vom: 05. Dez. |w (DE-627)558690076 |w (DE-600)2409480-8 |x 1756-3305 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:1 |g day:05 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13071-022-05522-1 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 1 |b 05 |c 12 |
author_variant |
a e v ae aev z x zx |
---|---|
matchkey_str |
article:17563305:2022----::msraigotacltroteotooclxunufsitsnaaisnte |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s13071-022-05522-1 doi (DE-627)SPR051203707 (SPR)s13071-022-05522-1-e DE-627 ger DE-627 rakwb eng Vorsino, Adam E. verfasserin aut A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract Sterile insect technique (dpeaa)DE-He213 Incompatible insect technique (dpeaa)DE-He213 Culicid (dpeaa)DE-He213 Infrastructure (dpeaa)DE-He213 Cost calculator (dpeaa)DE-He213 Hawaiʻi (dpeaa)DE-He213 Xi, Zhiyong aut Enthalten in Parasites & vectors London : BioMed Central, 2008 15(2022), 1 vom: 05. Dez. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:15 year:2022 number:1 day:05 month:12 https://dx.doi.org/10.1186/s13071-022-05522-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 1 05 12 |
spelling |
10.1186/s13071-022-05522-1 doi (DE-627)SPR051203707 (SPR)s13071-022-05522-1-e DE-627 ger DE-627 rakwb eng Vorsino, Adam E. verfasserin aut A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract Sterile insect technique (dpeaa)DE-He213 Incompatible insect technique (dpeaa)DE-He213 Culicid (dpeaa)DE-He213 Infrastructure (dpeaa)DE-He213 Cost calculator (dpeaa)DE-He213 Hawaiʻi (dpeaa)DE-He213 Xi, Zhiyong aut Enthalten in Parasites & vectors London : BioMed Central, 2008 15(2022), 1 vom: 05. Dez. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:15 year:2022 number:1 day:05 month:12 https://dx.doi.org/10.1186/s13071-022-05522-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 1 05 12 |
allfields_unstemmed |
10.1186/s13071-022-05522-1 doi (DE-627)SPR051203707 (SPR)s13071-022-05522-1-e DE-627 ger DE-627 rakwb eng Vorsino, Adam E. verfasserin aut A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract Sterile insect technique (dpeaa)DE-He213 Incompatible insect technique (dpeaa)DE-He213 Culicid (dpeaa)DE-He213 Infrastructure (dpeaa)DE-He213 Cost calculator (dpeaa)DE-He213 Hawaiʻi (dpeaa)DE-He213 Xi, Zhiyong aut Enthalten in Parasites & vectors London : BioMed Central, 2008 15(2022), 1 vom: 05. Dez. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:15 year:2022 number:1 day:05 month:12 https://dx.doi.org/10.1186/s13071-022-05522-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 1 05 12 |
allfieldsGer |
10.1186/s13071-022-05522-1 doi (DE-627)SPR051203707 (SPR)s13071-022-05522-1-e DE-627 ger DE-627 rakwb eng Vorsino, Adam E. verfasserin aut A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract Sterile insect technique (dpeaa)DE-He213 Incompatible insect technique (dpeaa)DE-He213 Culicid (dpeaa)DE-He213 Infrastructure (dpeaa)DE-He213 Cost calculator (dpeaa)DE-He213 Hawaiʻi (dpeaa)DE-He213 Xi, Zhiyong aut Enthalten in Parasites & vectors London : BioMed Central, 2008 15(2022), 1 vom: 05. Dez. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:15 year:2022 number:1 day:05 month:12 https://dx.doi.org/10.1186/s13071-022-05522-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 1 05 12 |
allfieldsSound |
10.1186/s13071-022-05522-1 doi (DE-627)SPR051203707 (SPR)s13071-022-05522-1-e DE-627 ger DE-627 rakwb eng Vorsino, Adam E. verfasserin aut A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract Sterile insect technique (dpeaa)DE-He213 Incompatible insect technique (dpeaa)DE-He213 Culicid (dpeaa)DE-He213 Infrastructure (dpeaa)DE-He213 Cost calculator (dpeaa)DE-He213 Hawaiʻi (dpeaa)DE-He213 Xi, Zhiyong aut Enthalten in Parasites & vectors London : BioMed Central, 2008 15(2022), 1 vom: 05. Dez. (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:15 year:2022 number:1 day:05 month:12 https://dx.doi.org/10.1186/s13071-022-05522-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2022 1 05 12 |
language |
English |
source |
Enthalten in Parasites & vectors 15(2022), 1 vom: 05. Dez. volume:15 year:2022 number:1 day:05 month:12 |
sourceStr |
Enthalten in Parasites & vectors 15(2022), 1 vom: 05. Dez. volume:15 year:2022 number:1 day:05 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Sterile insect technique Incompatible insect technique Culicid Infrastructure Cost calculator Hawaiʻi |
isfreeaccess_bool |
true |
container_title |
Parasites & vectors |
authorswithroles_txt_mv |
Vorsino, Adam E. @@aut@@ Xi, Zhiyong @@aut@@ |
publishDateDaySort_date |
2022-12-05T00:00:00Z |
hierarchy_top_id |
558690076 |
id |
SPR051203707 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051203707</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509121931.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13071-022-05522-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051203707</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13071-022-05522-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vorsino, Adam E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sterile insect technique</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incompatible insect technique</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Culicid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infrastructure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost calculator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hawaiʻi</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Zhiyong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">15(2022), 1 vom: 05. Dez.</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13071-022-05522-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Vorsino, Adam E. |
spellingShingle |
Vorsino, Adam E. misc Sterile insect technique misc Incompatible insect technique misc Culicid misc Infrastructure misc Cost calculator misc Hawaiʻi A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
authorStr |
Vorsino, Adam E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)558690076 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1756-3305 |
topic_title |
A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique Sterile insect technique (dpeaa)DE-He213 Incompatible insect technique (dpeaa)DE-He213 Culicid (dpeaa)DE-He213 Infrastructure (dpeaa)DE-He213 Cost calculator (dpeaa)DE-He213 Hawaiʻi (dpeaa)DE-He213 |
topic |
misc Sterile insect technique misc Incompatible insect technique misc Culicid misc Infrastructure misc Cost calculator misc Hawaiʻi |
topic_unstemmed |
misc Sterile insect technique misc Incompatible insect technique misc Culicid misc Infrastructure misc Cost calculator misc Hawaiʻi |
topic_browse |
misc Sterile insect technique misc Incompatible insect technique misc Culicid misc Infrastructure misc Cost calculator misc Hawaiʻi |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Parasites & vectors |
hierarchy_parent_id |
558690076 |
hierarchy_top_title |
Parasites & vectors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)558690076 (DE-600)2409480-8 |
title |
A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
ctrlnum |
(DE-627)SPR051203707 (SPR)s13071-022-05522-1-e |
title_full |
A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
author_sort |
Vorsino, Adam E. |
journal |
Parasites & vectors |
journalStr |
Parasites & vectors |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Vorsino, Adam E. Xi, Zhiyong |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Vorsino, Adam E. |
doi_str_mv |
10.1186/s13071-022-05522-1 |
title_sort |
mass rearing cost calculator for the control of culex quinquefasciatus in hawaiʻi using the incompatible insect technique |
title_auth |
A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
abstract |
Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract © The Author(s) 2022 |
abstractGer |
Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract © The Author(s) 2022 |
abstract_unstemmed |
Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique |
url |
https://dx.doi.org/10.1186/s13071-022-05522-1 |
remote_bool |
true |
author2 |
Xi, Zhiyong |
author2Str |
Xi, Zhiyong |
ppnlink |
558690076 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13071-022-05522-1 |
up_date |
2024-07-03T20:24:22.447Z |
_version_ |
1803590841085722624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051203707</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509121931.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13071-022-05522-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051203707</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13071-022-05522-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vorsino, Adam E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A mass rearing cost calculator for the control of Culex quinquefasciatus in Hawaiʻi using the incompatible insect technique</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Hawaiʻi’s native forest avifauna is experiencing drastic declines due to climate change-induced increases in temperature encroaching on their upper-elevation montane rainforest refugia. Higher temperatures support greater avian malaria infection rates due to greater densities of its primary vector, the southern house mosquito Culex quinquefasciatus, and enhance development of the avian malaria parasite Plasmodium relictum. Here we propose the use of the incompatible insect technique (IIT) or the combined IIT/sterile insect technique (SIT) for the landscape-scale (i.e., area-wide) control of Cx. quinquefasciatus, and have developed a calculator to estimate the costs of IIT and IIT/SIT applications at various sites in Hawaiʻi. Methods The overall cost of the infrastructure, personnel, and space necessary to produce incompatible adult males for release is calculated in a unit of ~ 1 million culicid larvae/week. We assessed the rearing costs and need for effective control at various elevations in Hawaiʻi using a 10:1 overflooding ratio at each elevation. The calculator uses a rate describing the number of culicids needed to control wild-type mosquitoes at each site/elevation, in relation to the number of larval rearing units. This rate is a constant from which other costs are quantified. With minor modifications, the calculator described here can be applied to other areas, mosquito species, and similar techniques. To test the robustness of our calculator, the Kauaʻi-specific culicid IIT/SIT infrastructure costs were also compared to costs from Singapore, Mexico, and China using the yearly cost of control per hectare, and purchasing power parity between sites for the cost of 1000 IIT/SIT males. Results As a proof of concept, we have used the calculator to estimate rearing infrastructure costs for an application of IIT in the Alakaʻi Wilderness Reserve on the island of Kauaʻi. Our analysis estimated an initial investment of at least ~ $1.16M with subsequent yearly costs of approximately $376K. Projections of rearing costs for control at lower elevations are ~ 100 times greater than in upper elevation forest bird refugia. These results are relatively comparable to those real-world cost estimates developed for IIT/SIT culicid male production in other countries when inflation and purchasing power parity are considered. We also present supplemental examples of infrastructure costs needed to control Cx. quinquefasciatus in the home range of ʻiʻiwi Drepanis coccinea, and the yellow fever vector Aedes aegypti. Conclusions Our cost calculator can be used to effectively estimate the mass rearing cost of an IIT/SIT program. Therefore, the linear relationship of rearing infrastructure to costs used in this calculator is useful for developing a conservative cost estimate for IIT/SIT culicid mass rearing infrastructure. These mass rearing cost estimates vary based on the density of the targeted organism at the application site. Graphic Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sterile insect technique</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incompatible insect technique</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Culicid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infrastructure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost calculator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hawaiʻi</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi, Zhiyong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">15(2022), 1 vom: 05. Dez.</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13071-022-05522-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.399806 |