Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study
Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify f...
Ausführliche Beschreibung
Autor*in: |
Kale, Dimitra [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC public health - London : BioMed Central, 2001, 22(2022), 1 vom: 14. Dez. |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2022 ; number:1 ; day:14 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s12889-022-14509-7 |
---|
Katalog-ID: |
SPR051234513 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR051234513 | ||
003 | DE-627 | ||
005 | 20230509122647.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12889-022-14509-7 |2 doi | |
035 | |a (DE-627)SPR051234513 | ||
035 | |a (SPR)s12889-022-14509-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kale, Dimitra |e verfasserin |4 aut | |
245 | 1 | 0 | |a Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify factors associated with it. This study assessed: 1) rates of adherence, to key COVID-19 health-protective behaviours and 2) the socio-demographic, health and COVID-19-related factors associated with adherence. Methods Data were collected on a sample of UK-based adults during August–September 2020 (n = 1,969; lockdown restrictions were eased in the UK; period 1) and November 2020- January 2021 (n = 1944; second UK lockdown; period 2). Results Adherence ranged between 50–95%, with higher adherence during the period of stricter measures. Highest adherence was observed for wearing masks indoors (period 1: 80.2%, 95%CI 78.4%-82.0%, period 2: 92.4%, 95%CI 91.1%-93.6%) and lowest for carrying own disinfectant (period 1: 48.4%, 95%CI 46.2%-50.7%, period 2: 50.7%, 95%CI 48.4%-53.0%). Generalized estimating equation models indicated that key factors of greater odds of adherence included being female, older age, having higher income, residing in England, living with vulnerable individuals and perceived high risk of COVID-19. Conclusions Targeted messages to different demographic groups may enhance adherence to health-protective behaviours, which is paramount for the control of airborne respiratory diseases. Protocol and analysis plan Registration The analysis plan was pre-registered, and it is available at https://osf.io/6tnc9/. | ||
650 | 4 | |a Adherence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Health-protective measures |7 (dpeaa)DE-He213 | |
650 | 4 | |a COVID-19 |7 (dpeaa)DE-He213 | |
650 | 4 | |a UK |7 (dpeaa)DE-He213 | |
650 | 4 | |a Behaviour |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wash hands |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wear masks |7 (dpeaa)DE-He213 | |
650 | 4 | |a Physical distance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Disinfectant |7 (dpeaa)DE-He213 | |
700 | 1 | |a Herbec, Aleksandra |4 aut | |
700 | 1 | |a Beard, Emma |4 aut | |
700 | 1 | |a Gold, Natalie |4 aut | |
700 | 1 | |a Shahab, Lion |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC public health |d London : BioMed Central, 2001 |g 22(2022), 1 vom: 14. Dez. |w (DE-627)326643583 |w (DE-600)2041338-5 |x 1471-2458 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2022 |g number:1 |g day:14 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12889-022-14509-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2022 |e 1 |b 14 |c 12 |
author_variant |
d k dk a h ah e b eb n g ng l s ls |
---|---|
matchkey_str |
article:14712458:2022----::atrsnpeitroahrneoelhrtcieesrsuigoi1pneiitekrsscinlnl |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s12889-022-14509-7 doi (DE-627)SPR051234513 (SPR)s12889-022-14509-7-e DE-627 ger DE-627 rakwb eng Kale, Dimitra verfasserin aut Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify factors associated with it. This study assessed: 1) rates of adherence, to key COVID-19 health-protective behaviours and 2) the socio-demographic, health and COVID-19-related factors associated with adherence. Methods Data were collected on a sample of UK-based adults during August–September 2020 (n = 1,969; lockdown restrictions were eased in the UK; period 1) and November 2020- January 2021 (n = 1944; second UK lockdown; period 2). Results Adherence ranged between 50–95%, with higher adherence during the period of stricter measures. Highest adherence was observed for wearing masks indoors (period 1: 80.2%, 95%CI 78.4%-82.0%, period 2: 92.4%, 95%CI 91.1%-93.6%) and lowest for carrying own disinfectant (period 1: 48.4%, 95%CI 46.2%-50.7%, period 2: 50.7%, 95%CI 48.4%-53.0%). Generalized estimating equation models indicated that key factors of greater odds of adherence included being female, older age, having higher income, residing in England, living with vulnerable individuals and perceived high risk of COVID-19. Conclusions Targeted messages to different demographic groups may enhance adherence to health-protective behaviours, which is paramount for the control of airborne respiratory diseases. Protocol and analysis plan Registration The analysis plan was pre-registered, and it is available at https://osf.io/6tnc9/. Adherence (dpeaa)DE-He213 Health-protective measures (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 UK (dpeaa)DE-He213 Behaviour (dpeaa)DE-He213 Wash hands (dpeaa)DE-He213 Wear masks (dpeaa)DE-He213 Physical distance (dpeaa)DE-He213 Disinfectant (dpeaa)DE-He213 Herbec, Aleksandra aut Beard, Emma aut Gold, Natalie aut Shahab, Lion aut Enthalten in BMC public health London : BioMed Central, 2001 22(2022), 1 vom: 14. Dez. (DE-627)326643583 (DE-600)2041338-5 1471-2458 nnns volume:22 year:2022 number:1 day:14 month:12 https://dx.doi.org/10.1186/s12889-022-14509-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 14 12 |
spelling |
10.1186/s12889-022-14509-7 doi (DE-627)SPR051234513 (SPR)s12889-022-14509-7-e DE-627 ger DE-627 rakwb eng Kale, Dimitra verfasserin aut Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify factors associated with it. This study assessed: 1) rates of adherence, to key COVID-19 health-protective behaviours and 2) the socio-demographic, health and COVID-19-related factors associated with adherence. Methods Data were collected on a sample of UK-based adults during August–September 2020 (n = 1,969; lockdown restrictions were eased in the UK; period 1) and November 2020- January 2021 (n = 1944; second UK lockdown; period 2). Results Adherence ranged between 50–95%, with higher adherence during the period of stricter measures. Highest adherence was observed for wearing masks indoors (period 1: 80.2%, 95%CI 78.4%-82.0%, period 2: 92.4%, 95%CI 91.1%-93.6%) and lowest for carrying own disinfectant (period 1: 48.4%, 95%CI 46.2%-50.7%, period 2: 50.7%, 95%CI 48.4%-53.0%). Generalized estimating equation models indicated that key factors of greater odds of adherence included being female, older age, having higher income, residing in England, living with vulnerable individuals and perceived high risk of COVID-19. Conclusions Targeted messages to different demographic groups may enhance adherence to health-protective behaviours, which is paramount for the control of airborne respiratory diseases. Protocol and analysis plan Registration The analysis plan was pre-registered, and it is available at https://osf.io/6tnc9/. Adherence (dpeaa)DE-He213 Health-protective measures (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 UK (dpeaa)DE-He213 Behaviour (dpeaa)DE-He213 Wash hands (dpeaa)DE-He213 Wear masks (dpeaa)DE-He213 Physical distance (dpeaa)DE-He213 Disinfectant (dpeaa)DE-He213 Herbec, Aleksandra aut Beard, Emma aut Gold, Natalie aut Shahab, Lion aut Enthalten in BMC public health London : BioMed Central, 2001 22(2022), 1 vom: 14. Dez. (DE-627)326643583 (DE-600)2041338-5 1471-2458 nnns volume:22 year:2022 number:1 day:14 month:12 https://dx.doi.org/10.1186/s12889-022-14509-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 14 12 |
allfields_unstemmed |
10.1186/s12889-022-14509-7 doi (DE-627)SPR051234513 (SPR)s12889-022-14509-7-e DE-627 ger DE-627 rakwb eng Kale, Dimitra verfasserin aut Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify factors associated with it. This study assessed: 1) rates of adherence, to key COVID-19 health-protective behaviours and 2) the socio-demographic, health and COVID-19-related factors associated with adherence. Methods Data were collected on a sample of UK-based adults during August–September 2020 (n = 1,969; lockdown restrictions were eased in the UK; period 1) and November 2020- January 2021 (n = 1944; second UK lockdown; period 2). Results Adherence ranged between 50–95%, with higher adherence during the period of stricter measures. Highest adherence was observed for wearing masks indoors (period 1: 80.2%, 95%CI 78.4%-82.0%, period 2: 92.4%, 95%CI 91.1%-93.6%) and lowest for carrying own disinfectant (period 1: 48.4%, 95%CI 46.2%-50.7%, period 2: 50.7%, 95%CI 48.4%-53.0%). Generalized estimating equation models indicated that key factors of greater odds of adherence included being female, older age, having higher income, residing in England, living with vulnerable individuals and perceived high risk of COVID-19. Conclusions Targeted messages to different demographic groups may enhance adherence to health-protective behaviours, which is paramount for the control of airborne respiratory diseases. Protocol and analysis plan Registration The analysis plan was pre-registered, and it is available at https://osf.io/6tnc9/. Adherence (dpeaa)DE-He213 Health-protective measures (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 UK (dpeaa)DE-He213 Behaviour (dpeaa)DE-He213 Wash hands (dpeaa)DE-He213 Wear masks (dpeaa)DE-He213 Physical distance (dpeaa)DE-He213 Disinfectant (dpeaa)DE-He213 Herbec, Aleksandra aut Beard, Emma aut Gold, Natalie aut Shahab, Lion aut Enthalten in BMC public health London : BioMed Central, 2001 22(2022), 1 vom: 14. Dez. (DE-627)326643583 (DE-600)2041338-5 1471-2458 nnns volume:22 year:2022 number:1 day:14 month:12 https://dx.doi.org/10.1186/s12889-022-14509-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 14 12 |
allfieldsGer |
10.1186/s12889-022-14509-7 doi (DE-627)SPR051234513 (SPR)s12889-022-14509-7-e DE-627 ger DE-627 rakwb eng Kale, Dimitra verfasserin aut Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify factors associated with it. This study assessed: 1) rates of adherence, to key COVID-19 health-protective behaviours and 2) the socio-demographic, health and COVID-19-related factors associated with adherence. Methods Data were collected on a sample of UK-based adults during August–September 2020 (n = 1,969; lockdown restrictions were eased in the UK; period 1) and November 2020- January 2021 (n = 1944; second UK lockdown; period 2). Results Adherence ranged between 50–95%, with higher adherence during the period of stricter measures. Highest adherence was observed for wearing masks indoors (period 1: 80.2%, 95%CI 78.4%-82.0%, period 2: 92.4%, 95%CI 91.1%-93.6%) and lowest for carrying own disinfectant (period 1: 48.4%, 95%CI 46.2%-50.7%, period 2: 50.7%, 95%CI 48.4%-53.0%). Generalized estimating equation models indicated that key factors of greater odds of adherence included being female, older age, having higher income, residing in England, living with vulnerable individuals and perceived high risk of COVID-19. Conclusions Targeted messages to different demographic groups may enhance adherence to health-protective behaviours, which is paramount for the control of airborne respiratory diseases. Protocol and analysis plan Registration The analysis plan was pre-registered, and it is available at https://osf.io/6tnc9/. Adherence (dpeaa)DE-He213 Health-protective measures (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 UK (dpeaa)DE-He213 Behaviour (dpeaa)DE-He213 Wash hands (dpeaa)DE-He213 Wear masks (dpeaa)DE-He213 Physical distance (dpeaa)DE-He213 Disinfectant (dpeaa)DE-He213 Herbec, Aleksandra aut Beard, Emma aut Gold, Natalie aut Shahab, Lion aut Enthalten in BMC public health London : BioMed Central, 2001 22(2022), 1 vom: 14. Dez. (DE-627)326643583 (DE-600)2041338-5 1471-2458 nnns volume:22 year:2022 number:1 day:14 month:12 https://dx.doi.org/10.1186/s12889-022-14509-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 14 12 |
allfieldsSound |
10.1186/s12889-022-14509-7 doi (DE-627)SPR051234513 (SPR)s12889-022-14509-7-e DE-627 ger DE-627 rakwb eng Kale, Dimitra verfasserin aut Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify factors associated with it. This study assessed: 1) rates of adherence, to key COVID-19 health-protective behaviours and 2) the socio-demographic, health and COVID-19-related factors associated with adherence. Methods Data were collected on a sample of UK-based adults during August–September 2020 (n = 1,969; lockdown restrictions were eased in the UK; period 1) and November 2020- January 2021 (n = 1944; second UK lockdown; period 2). Results Adherence ranged between 50–95%, with higher adherence during the period of stricter measures. Highest adherence was observed for wearing masks indoors (period 1: 80.2%, 95%CI 78.4%-82.0%, period 2: 92.4%, 95%CI 91.1%-93.6%) and lowest for carrying own disinfectant (period 1: 48.4%, 95%CI 46.2%-50.7%, period 2: 50.7%, 95%CI 48.4%-53.0%). Generalized estimating equation models indicated that key factors of greater odds of adherence included being female, older age, having higher income, residing in England, living with vulnerable individuals and perceived high risk of COVID-19. Conclusions Targeted messages to different demographic groups may enhance adherence to health-protective behaviours, which is paramount for the control of airborne respiratory diseases. Protocol and analysis plan Registration The analysis plan was pre-registered, and it is available at https://osf.io/6tnc9/. Adherence (dpeaa)DE-He213 Health-protective measures (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 UK (dpeaa)DE-He213 Behaviour (dpeaa)DE-He213 Wash hands (dpeaa)DE-He213 Wear masks (dpeaa)DE-He213 Physical distance (dpeaa)DE-He213 Disinfectant (dpeaa)DE-He213 Herbec, Aleksandra aut Beard, Emma aut Gold, Natalie aut Shahab, Lion aut Enthalten in BMC public health London : BioMed Central, 2001 22(2022), 1 vom: 14. Dez. (DE-627)326643583 (DE-600)2041338-5 1471-2458 nnns volume:22 year:2022 number:1 day:14 month:12 https://dx.doi.org/10.1186/s12889-022-14509-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2022 1 14 12 |
language |
English |
source |
Enthalten in BMC public health 22(2022), 1 vom: 14. Dez. volume:22 year:2022 number:1 day:14 month:12 |
sourceStr |
Enthalten in BMC public health 22(2022), 1 vom: 14. Dez. volume:22 year:2022 number:1 day:14 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Adherence Health-protective measures COVID-19 UK Behaviour Wash hands Wear masks Physical distance Disinfectant |
isfreeaccess_bool |
true |
container_title |
BMC public health |
authorswithroles_txt_mv |
Kale, Dimitra @@aut@@ Herbec, Aleksandra @@aut@@ Beard, Emma @@aut@@ Gold, Natalie @@aut@@ Shahab, Lion @@aut@@ |
publishDateDaySort_date |
2022-12-14T00:00:00Z |
hierarchy_top_id |
326643583 |
id |
SPR051234513 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051234513</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509122647.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12889-022-14509-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051234513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12889-022-14509-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kale, Dimitra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify factors associated with it. This study assessed: 1) rates of adherence, to key COVID-19 health-protective behaviours and 2) the socio-demographic, health and COVID-19-related factors associated with adherence. Methods Data were collected on a sample of UK-based adults during August–September 2020 (n = 1,969; lockdown restrictions were eased in the UK; period 1) and November 2020- January 2021 (n = 1944; second UK lockdown; period 2). Results Adherence ranged between 50–95%, with higher adherence during the period of stricter measures. Highest adherence was observed for wearing masks indoors (period 1: 80.2%, 95%CI 78.4%-82.0%, period 2: 92.4%, 95%CI 91.1%-93.6%) and lowest for carrying own disinfectant (period 1: 48.4%, 95%CI 46.2%-50.7%, period 2: 50.7%, 95%CI 48.4%-53.0%). Generalized estimating equation models indicated that key factors of greater odds of adherence included being female, older age, having higher income, residing in England, living with vulnerable individuals and perceived high risk of COVID-19. Conclusions Targeted messages to different demographic groups may enhance adherence to health-protective behaviours, which is paramount for the control of airborne respiratory diseases. Protocol and analysis plan Registration The analysis plan was pre-registered, and it is available at https://osf.io/6tnc9/.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adherence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health-protective measures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">UK</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Behaviour</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wash hands</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wear masks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical distance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disinfectant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herbec, Aleksandra</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beard, Emma</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gold, Natalie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shahab, Lion</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC public health</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">22(2022), 1 vom: 14. Dez.</subfield><subfield code="w">(DE-627)326643583</subfield><subfield code="w">(DE-600)2041338-5</subfield><subfield code="x">1471-2458</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12889-022-14509-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Kale, Dimitra |
spellingShingle |
Kale, Dimitra misc Adherence misc Health-protective measures misc COVID-19 misc UK misc Behaviour misc Wash hands misc Wear masks misc Physical distance misc Disinfectant Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study |
authorStr |
Kale, Dimitra |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643583 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2458 |
topic_title |
Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study Adherence (dpeaa)DE-He213 Health-protective measures (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 UK (dpeaa)DE-He213 Behaviour (dpeaa)DE-He213 Wash hands (dpeaa)DE-He213 Wear masks (dpeaa)DE-He213 Physical distance (dpeaa)DE-He213 Disinfectant (dpeaa)DE-He213 |
topic |
misc Adherence misc Health-protective measures misc COVID-19 misc UK misc Behaviour misc Wash hands misc Wear masks misc Physical distance misc Disinfectant |
topic_unstemmed |
misc Adherence misc Health-protective measures misc COVID-19 misc UK misc Behaviour misc Wash hands misc Wear masks misc Physical distance misc Disinfectant |
topic_browse |
misc Adherence misc Health-protective measures misc COVID-19 misc UK misc Behaviour misc Wash hands misc Wear masks misc Physical distance misc Disinfectant |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC public health |
hierarchy_parent_id |
326643583 |
hierarchy_top_title |
BMC public health |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643583 (DE-600)2041338-5 |
title |
Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study |
ctrlnum |
(DE-627)SPR051234513 (SPR)s12889-022-14509-7-e |
title_full |
Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study |
author_sort |
Kale, Dimitra |
journal |
BMC public health |
journalStr |
BMC public health |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Kale, Dimitra Herbec, Aleksandra Beard, Emma Gold, Natalie Shahab, Lion |
container_volume |
22 |
format_se |
Elektronische Aufsätze |
author-letter |
Kale, Dimitra |
doi_str_mv |
10.1186/s12889-022-14509-7 |
title_sort |
patterns and predictors of adherence to health-protective measures during covid-19 pandemic in the uk: cross-sectional and longitudinal findings from the hebeco study |
title_auth |
Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study |
abstract |
Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify factors associated with it. This study assessed: 1) rates of adherence, to key COVID-19 health-protective behaviours and 2) the socio-demographic, health and COVID-19-related factors associated with adherence. Methods Data were collected on a sample of UK-based adults during August–September 2020 (n = 1,969; lockdown restrictions were eased in the UK; period 1) and November 2020- January 2021 (n = 1944; second UK lockdown; period 2). Results Adherence ranged between 50–95%, with higher adherence during the period of stricter measures. Highest adherence was observed for wearing masks indoors (period 1: 80.2%, 95%CI 78.4%-82.0%, period 2: 92.4%, 95%CI 91.1%-93.6%) and lowest for carrying own disinfectant (period 1: 48.4%, 95%CI 46.2%-50.7%, period 2: 50.7%, 95%CI 48.4%-53.0%). Generalized estimating equation models indicated that key factors of greater odds of adherence included being female, older age, having higher income, residing in England, living with vulnerable individuals and perceived high risk of COVID-19. Conclusions Targeted messages to different demographic groups may enhance adherence to health-protective behaviours, which is paramount for the control of airborne respiratory diseases. Protocol and analysis plan Registration The analysis plan was pre-registered, and it is available at https://osf.io/6tnc9/. © The Author(s) 2022 |
abstractGer |
Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify factors associated with it. This study assessed: 1) rates of adherence, to key COVID-19 health-protective behaviours and 2) the socio-demographic, health and COVID-19-related factors associated with adherence. Methods Data were collected on a sample of UK-based adults during August–September 2020 (n = 1,969; lockdown restrictions were eased in the UK; period 1) and November 2020- January 2021 (n = 1944; second UK lockdown; period 2). Results Adherence ranged between 50–95%, with higher adherence during the period of stricter measures. Highest adherence was observed for wearing masks indoors (period 1: 80.2%, 95%CI 78.4%-82.0%, period 2: 92.4%, 95%CI 91.1%-93.6%) and lowest for carrying own disinfectant (period 1: 48.4%, 95%CI 46.2%-50.7%, period 2: 50.7%, 95%CI 48.4%-53.0%). Generalized estimating equation models indicated that key factors of greater odds of adherence included being female, older age, having higher income, residing in England, living with vulnerable individuals and perceived high risk of COVID-19. Conclusions Targeted messages to different demographic groups may enhance adherence to health-protective behaviours, which is paramount for the control of airborne respiratory diseases. Protocol and analysis plan Registration The analysis plan was pre-registered, and it is available at https://osf.io/6tnc9/. © The Author(s) 2022 |
abstract_unstemmed |
Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify factors associated with it. This study assessed: 1) rates of adherence, to key COVID-19 health-protective behaviours and 2) the socio-demographic, health and COVID-19-related factors associated with adherence. Methods Data were collected on a sample of UK-based adults during August–September 2020 (n = 1,969; lockdown restrictions were eased in the UK; period 1) and November 2020- January 2021 (n = 1944; second UK lockdown; period 2). Results Adherence ranged between 50–95%, with higher adherence during the period of stricter measures. Highest adherence was observed for wearing masks indoors (period 1: 80.2%, 95%CI 78.4%-82.0%, period 2: 92.4%, 95%CI 91.1%-93.6%) and lowest for carrying own disinfectant (period 1: 48.4%, 95%CI 46.2%-50.7%, period 2: 50.7%, 95%CI 48.4%-53.0%). Generalized estimating equation models indicated that key factors of greater odds of adherence included being female, older age, having higher income, residing in England, living with vulnerable individuals and perceived high risk of COVID-19. Conclusions Targeted messages to different demographic groups may enhance adherence to health-protective behaviours, which is paramount for the control of airborne respiratory diseases. Protocol and analysis plan Registration The analysis plan was pre-registered, and it is available at https://osf.io/6tnc9/. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study |
url |
https://dx.doi.org/10.1186/s12889-022-14509-7 |
remote_bool |
true |
author2 |
Herbec, Aleksandra Beard, Emma Gold, Natalie Shahab, Lion |
author2Str |
Herbec, Aleksandra Beard, Emma Gold, Natalie Shahab, Lion |
ppnlink |
326643583 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12889-022-14509-7 |
up_date |
2024-07-03T20:35:40.282Z |
_version_ |
1803591551850381312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051234513</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509122647.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12889-022-14509-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051234513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12889-022-14509-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kale, Dimitra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Patterns and predictors of adherence to health-protective measures during COVID-19 pandemic in the UK: cross-sectional and longitudinal findings from the HEBECO study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Adherence to health-protective behaviours (regularly washing hands, wearing masks indoors, maintaining physical distancing, carrying disinfectant) remains paramount for the successful control of COVID-19 at population level. It is therefore important to monitor adherence and to identify factors associated with it. This study assessed: 1) rates of adherence, to key COVID-19 health-protective behaviours and 2) the socio-demographic, health and COVID-19-related factors associated with adherence. Methods Data were collected on a sample of UK-based adults during August–September 2020 (n = 1,969; lockdown restrictions were eased in the UK; period 1) and November 2020- January 2021 (n = 1944; second UK lockdown; period 2). Results Adherence ranged between 50–95%, with higher adherence during the period of stricter measures. Highest adherence was observed for wearing masks indoors (period 1: 80.2%, 95%CI 78.4%-82.0%, period 2: 92.4%, 95%CI 91.1%-93.6%) and lowest for carrying own disinfectant (period 1: 48.4%, 95%CI 46.2%-50.7%, period 2: 50.7%, 95%CI 48.4%-53.0%). Generalized estimating equation models indicated that key factors of greater odds of adherence included being female, older age, having higher income, residing in England, living with vulnerable individuals and perceived high risk of COVID-19. Conclusions Targeted messages to different demographic groups may enhance adherence to health-protective behaviours, which is paramount for the control of airborne respiratory diseases. Protocol and analysis plan Registration The analysis plan was pre-registered, and it is available at https://osf.io/6tnc9/.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adherence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Health-protective measures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">UK</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Behaviour</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wash hands</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wear masks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical distance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disinfectant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Herbec, Aleksandra</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beard, Emma</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gold, Natalie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shahab, Lion</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC public health</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">22(2022), 1 vom: 14. Dez.</subfield><subfield code="w">(DE-627)326643583</subfield><subfield code="w">(DE-600)2041338-5</subfield><subfield code="x">1471-2458</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12889-022-14509-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.4012585 |