Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways
Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various bioba...
Ausführliche Beschreibung
Autor*in: |
Ren, Yaxin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Biotechnology for biofuels - London : BioMed Central, 2008, 15(2022), 1 vom: 28. Dez. |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2022 ; number:1 ; day:28 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s13068-022-02252-5 |
---|
Katalog-ID: |
SPR051271427 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR051271427 | ||
003 | DE-627 | ||
005 | 20230509123404.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13068-022-02252-5 |2 doi | |
035 | |a (DE-627)SPR051271427 | ||
035 | |a (SPR)s13068-022-02252-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ren, Yaxin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed. | ||
650 | 4 | |a Aldopentose |7 (dpeaa)DE-He213 | |
650 | 4 | |a Non-phosphorylative pathways |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pentose catabolism |7 (dpeaa)DE-He213 | |
650 | 4 | |a Aldose-1-dehydrogenase |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lactonase |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sugar acid dehydratase |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ketoglutarate-semialdehyde dehydrogenase |7 (dpeaa)DE-He213 | |
650 | 4 | |a Aldolase |7 (dpeaa)DE-He213 | |
700 | 1 | |a Eronen, Veikko |4 aut | |
700 | 1 | |a Blomster Andberg, Martina |4 aut | |
700 | 1 | |a Koivula, Anu |4 aut | |
700 | 1 | |a Hakulinen, Nina |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Biotechnology for biofuels |d London : BioMed Central, 2008 |g 15(2022), 1 vom: 28. Dez. |w (DE-627)563167882 |w (DE-600)2421351-2 |x 1754-6834 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2022 |g number:1 |g day:28 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13068-022-02252-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_4305 | ||
951 | |a AR | ||
952 | |d 15 |j 2022 |e 1 |b 28 |c 12 |
author_variant |
y r yr v e ve a m b am amb a k ak n h nh |
---|---|
matchkey_str |
article:17546834:2022----::tutraducinfloetsctblsezmsnovdnxdtv |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1186/s13068-022-02252-5 doi (DE-627)SPR051271427 (SPR)s13068-022-02252-5-e DE-627 ger DE-627 rakwb eng Ren, Yaxin verfasserin aut Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed. Aldopentose (dpeaa)DE-He213 Non-phosphorylative pathways (dpeaa)DE-He213 Pentose catabolism (dpeaa)DE-He213 Aldose-1-dehydrogenase (dpeaa)DE-He213 Lactonase (dpeaa)DE-He213 Sugar acid dehydratase (dpeaa)DE-He213 Ketoglutarate-semialdehyde dehydrogenase (dpeaa)DE-He213 Aldolase (dpeaa)DE-He213 Eronen, Veikko aut Blomster Andberg, Martina aut Koivula, Anu aut Hakulinen, Nina aut Enthalten in Biotechnology for biofuels London : BioMed Central, 2008 15(2022), 1 vom: 28. Dez. (DE-627)563167882 (DE-600)2421351-2 1754-6834 nnns volume:15 year:2022 number:1 day:28 month:12 https://dx.doi.org/10.1186/s13068-022-02252-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 AR 15 2022 1 28 12 |
spelling |
10.1186/s13068-022-02252-5 doi (DE-627)SPR051271427 (SPR)s13068-022-02252-5-e DE-627 ger DE-627 rakwb eng Ren, Yaxin verfasserin aut Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed. Aldopentose (dpeaa)DE-He213 Non-phosphorylative pathways (dpeaa)DE-He213 Pentose catabolism (dpeaa)DE-He213 Aldose-1-dehydrogenase (dpeaa)DE-He213 Lactonase (dpeaa)DE-He213 Sugar acid dehydratase (dpeaa)DE-He213 Ketoglutarate-semialdehyde dehydrogenase (dpeaa)DE-He213 Aldolase (dpeaa)DE-He213 Eronen, Veikko aut Blomster Andberg, Martina aut Koivula, Anu aut Hakulinen, Nina aut Enthalten in Biotechnology for biofuels London : BioMed Central, 2008 15(2022), 1 vom: 28. Dez. (DE-627)563167882 (DE-600)2421351-2 1754-6834 nnns volume:15 year:2022 number:1 day:28 month:12 https://dx.doi.org/10.1186/s13068-022-02252-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 AR 15 2022 1 28 12 |
allfields_unstemmed |
10.1186/s13068-022-02252-5 doi (DE-627)SPR051271427 (SPR)s13068-022-02252-5-e DE-627 ger DE-627 rakwb eng Ren, Yaxin verfasserin aut Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed. Aldopentose (dpeaa)DE-He213 Non-phosphorylative pathways (dpeaa)DE-He213 Pentose catabolism (dpeaa)DE-He213 Aldose-1-dehydrogenase (dpeaa)DE-He213 Lactonase (dpeaa)DE-He213 Sugar acid dehydratase (dpeaa)DE-He213 Ketoglutarate-semialdehyde dehydrogenase (dpeaa)DE-He213 Aldolase (dpeaa)DE-He213 Eronen, Veikko aut Blomster Andberg, Martina aut Koivula, Anu aut Hakulinen, Nina aut Enthalten in Biotechnology for biofuels London : BioMed Central, 2008 15(2022), 1 vom: 28. Dez. (DE-627)563167882 (DE-600)2421351-2 1754-6834 nnns volume:15 year:2022 number:1 day:28 month:12 https://dx.doi.org/10.1186/s13068-022-02252-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 AR 15 2022 1 28 12 |
allfieldsGer |
10.1186/s13068-022-02252-5 doi (DE-627)SPR051271427 (SPR)s13068-022-02252-5-e DE-627 ger DE-627 rakwb eng Ren, Yaxin verfasserin aut Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed. Aldopentose (dpeaa)DE-He213 Non-phosphorylative pathways (dpeaa)DE-He213 Pentose catabolism (dpeaa)DE-He213 Aldose-1-dehydrogenase (dpeaa)DE-He213 Lactonase (dpeaa)DE-He213 Sugar acid dehydratase (dpeaa)DE-He213 Ketoglutarate-semialdehyde dehydrogenase (dpeaa)DE-He213 Aldolase (dpeaa)DE-He213 Eronen, Veikko aut Blomster Andberg, Martina aut Koivula, Anu aut Hakulinen, Nina aut Enthalten in Biotechnology for biofuels London : BioMed Central, 2008 15(2022), 1 vom: 28. Dez. (DE-627)563167882 (DE-600)2421351-2 1754-6834 nnns volume:15 year:2022 number:1 day:28 month:12 https://dx.doi.org/10.1186/s13068-022-02252-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 AR 15 2022 1 28 12 |
allfieldsSound |
10.1186/s13068-022-02252-5 doi (DE-627)SPR051271427 (SPR)s13068-022-02252-5-e DE-627 ger DE-627 rakwb eng Ren, Yaxin verfasserin aut Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2022 Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed. Aldopentose (dpeaa)DE-He213 Non-phosphorylative pathways (dpeaa)DE-He213 Pentose catabolism (dpeaa)DE-He213 Aldose-1-dehydrogenase (dpeaa)DE-He213 Lactonase (dpeaa)DE-He213 Sugar acid dehydratase (dpeaa)DE-He213 Ketoglutarate-semialdehyde dehydrogenase (dpeaa)DE-He213 Aldolase (dpeaa)DE-He213 Eronen, Veikko aut Blomster Andberg, Martina aut Koivula, Anu aut Hakulinen, Nina aut Enthalten in Biotechnology for biofuels London : BioMed Central, 2008 15(2022), 1 vom: 28. Dez. (DE-627)563167882 (DE-600)2421351-2 1754-6834 nnns volume:15 year:2022 number:1 day:28 month:12 https://dx.doi.org/10.1186/s13068-022-02252-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 AR 15 2022 1 28 12 |
language |
English |
source |
Enthalten in Biotechnology for biofuels 15(2022), 1 vom: 28. Dez. volume:15 year:2022 number:1 day:28 month:12 |
sourceStr |
Enthalten in Biotechnology for biofuels 15(2022), 1 vom: 28. Dez. volume:15 year:2022 number:1 day:28 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Aldopentose Non-phosphorylative pathways Pentose catabolism Aldose-1-dehydrogenase Lactonase Sugar acid dehydratase Ketoglutarate-semialdehyde dehydrogenase Aldolase |
isfreeaccess_bool |
true |
container_title |
Biotechnology for biofuels |
authorswithroles_txt_mv |
Ren, Yaxin @@aut@@ Eronen, Veikko @@aut@@ Blomster Andberg, Martina @@aut@@ Koivula, Anu @@aut@@ Hakulinen, Nina @@aut@@ |
publishDateDaySort_date |
2022-12-28T00:00:00Z |
hierarchy_top_id |
563167882 |
id |
SPR051271427 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051271427</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123404.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13068-022-02252-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051271427</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13068-022-02252-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ren, Yaxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aldopentose</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-phosphorylative pathways</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pentose catabolism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aldose-1-dehydrogenase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lactonase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sugar acid dehydratase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ketoglutarate-semialdehyde dehydrogenase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aldolase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eronen, Veikko</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blomster Andberg, Martina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koivula, Anu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hakulinen, Nina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biotechnology for biofuels</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">15(2022), 1 vom: 28. Dez.</subfield><subfield code="w">(DE-627)563167882</subfield><subfield code="w">(DE-600)2421351-2</subfield><subfield code="x">1754-6834</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13068-022-02252-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Ren, Yaxin |
spellingShingle |
Ren, Yaxin misc Aldopentose misc Non-phosphorylative pathways misc Pentose catabolism misc Aldose-1-dehydrogenase misc Lactonase misc Sugar acid dehydratase misc Ketoglutarate-semialdehyde dehydrogenase misc Aldolase Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways |
authorStr |
Ren, Yaxin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)563167882 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1754-6834 |
topic_title |
Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways Aldopentose (dpeaa)DE-He213 Non-phosphorylative pathways (dpeaa)DE-He213 Pentose catabolism (dpeaa)DE-He213 Aldose-1-dehydrogenase (dpeaa)DE-He213 Lactonase (dpeaa)DE-He213 Sugar acid dehydratase (dpeaa)DE-He213 Ketoglutarate-semialdehyde dehydrogenase (dpeaa)DE-He213 Aldolase (dpeaa)DE-He213 |
topic |
misc Aldopentose misc Non-phosphorylative pathways misc Pentose catabolism misc Aldose-1-dehydrogenase misc Lactonase misc Sugar acid dehydratase misc Ketoglutarate-semialdehyde dehydrogenase misc Aldolase |
topic_unstemmed |
misc Aldopentose misc Non-phosphorylative pathways misc Pentose catabolism misc Aldose-1-dehydrogenase misc Lactonase misc Sugar acid dehydratase misc Ketoglutarate-semialdehyde dehydrogenase misc Aldolase |
topic_browse |
misc Aldopentose misc Non-phosphorylative pathways misc Pentose catabolism misc Aldose-1-dehydrogenase misc Lactonase misc Sugar acid dehydratase misc Ketoglutarate-semialdehyde dehydrogenase misc Aldolase |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biotechnology for biofuels |
hierarchy_parent_id |
563167882 |
hierarchy_top_title |
Biotechnology for biofuels |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)563167882 (DE-600)2421351-2 |
title |
Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways |
ctrlnum |
(DE-627)SPR051271427 (SPR)s13068-022-02252-5-e |
title_full |
Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways |
author_sort |
Ren, Yaxin |
journal |
Biotechnology for biofuels |
journalStr |
Biotechnology for biofuels |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Ren, Yaxin Eronen, Veikko Blomster Andberg, Martina Koivula, Anu Hakulinen, Nina |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Ren, Yaxin |
doi_str_mv |
10.1186/s13068-022-02252-5 |
title_sort |
structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways |
title_auth |
Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways |
abstract |
Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed. © The Author(s) 2022 |
abstractGer |
Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed. © The Author(s) 2022 |
abstract_unstemmed |
Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_22 GBV_ILN_2003 GBV_ILN_2027 GBV_ILN_4305 |
container_issue |
1 |
title_short |
Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways |
url |
https://dx.doi.org/10.1186/s13068-022-02252-5 |
remote_bool |
true |
author2 |
Eronen, Veikko Blomster Andberg, Martina Koivula, Anu Hakulinen, Nina |
author2Str |
Eronen, Veikko Blomster Andberg, Martina Koivula, Anu Hakulinen, Nina |
ppnlink |
563167882 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13068-022-02252-5 |
up_date |
2024-07-03T20:50:21.862Z |
_version_ |
1803592476258205696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051271427</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509123404.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13068-022-02252-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051271427</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13068-022-02252-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ren, Yaxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure and function of aldopentose catabolism enzymes involved in oxidative non-phosphorylative pathways</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Platform chemicals and polymer precursors can be produced via enzymatic pathways starting from lignocellulosic waste materials. The hemicellulose fraction of lignocellulose contains aldopentose sugars, such as d-xylose and l-arabinose, which can be enzymatically converted into various biobased products by microbial non-phosphorylated oxidative pathways. The Weimberg and Dahms pathways convert pentose sugars into α-ketoglutarate, or pyruvate and glycolaldehyde, respectively, which then serve as precursors for further conversion into a wide range of industrial products. In this review, we summarize the known three-dimensional structures of the enzymes involved in oxidative non-phosphorylative pathways of pentose catabolism. Key structural features and reaction mechanisms of a diverse set of enzymes responsible for the catalytic steps in the reactions are analysed and discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aldopentose</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-phosphorylative pathways</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pentose catabolism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aldose-1-dehydrogenase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lactonase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sugar acid dehydratase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ketoglutarate-semialdehyde dehydrogenase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aldolase</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eronen, Veikko</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blomster Andberg, Martina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koivula, Anu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hakulinen, Nina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biotechnology for biofuels</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">15(2022), 1 vom: 28. Dez.</subfield><subfield code="w">(DE-627)563167882</subfield><subfield code="w">(DE-600)2421351-2</subfield><subfield code="x">1754-6834</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13068-022-02252-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.401041 |