Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis
Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strateg...
Ausführliche Beschreibung
Autor*in: |
Choi, Horace C. W. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC medicine - London : BioMed Central, 2003, 21(2023), 1 vom: 10. Feb. |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2023 ; number:1 ; day:10 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s12916-023-02748-3 |
---|
Katalog-ID: |
SPR051438801 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR051438801 | ||
003 | DE-627 | ||
005 | 20230510062655.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12916-023-02748-3 |2 doi | |
035 | |a (DE-627)SPR051438801 | ||
035 | |a (SPR)s12916-023-02748-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Choi, Horace C. W. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strategy is likely different for unvaccinated and vaccinated cohorts upon national HPV immunization. However, health authorities typically only provide a one-size-fits-all recommendation for the general population. We aimed to evaluate the cost-effectiveness for determining the optimal screening strategies for vaccinated and unvaccinated cohorts. Methods We considered the women population in Hong Kong which has a unique HPV infection and cervical cancer epidemiology compared to other regions in China and Asia. We used mathematical models which comprise a deterministic age-structured compartmental dynamic component and a stochastic individual-based cohort component to evaluate the cost-effectiveness of screening strategies for cervical screening. Following the recommendations in local guidelines in Hong Kong, we considered strategies that involved cytology, HPV testing, or co-testing as primary cervical screening. We also explored the impacts of adopting alternative de-intensified strategies for vaccinated cohorts. The 3-year cytology screening was used as the base comparator while no screening was also considered for vaccinated cohorts. Women’s lifetime life years, quality-adjusted life years, and costs of screening and treatment were estimated from the societal perspective based on the year 2022 and were discounted by 3% annually. Incremental cost-effectiveness ratios (ICERs) were compared to a willingness to pay (WTP) threshold of one gross domestic product per capita (US $47,792). Probabilistic and one-way sensitivity analyses were conducted. Results Among unvaccinated cohorts, the strategy that adds reflex HPV to triage mild cytology abnormality generated more life years saved than cytology-only screening and could be a cost-effective alternative. Among vaccinated cohorts, when vaccine uptake was 85% (based on the uptake in 2022), all guideline-based strategies (including the cytology-only screening) had ICERs above the WTP threshold when compared with no screening if the vaccine-induced protection duration was 20 years or longer. Under the same conditions, HPV testing with genotyping triage had ICERs (compared with no screening) below the WTP threshold if the routine screening interval was lengthened to 10 and 15 years or screening was initiated at ages 30 and 35 years. Conclusions HPV testing is a cost-effective alternative to cytology for vaccinated cohorts, and the associated optimal screening frequency depends on vaccine uptake. Health authorities should optimize screening recommendations by accounting for population vaccine uptake. | ||
650 | 4 | |a Cervical cancer screening |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cost-effectiveness analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Population-based screening program |7 (dpeaa)DE-He213 | |
650 | 4 | |a HPV vaccination |7 (dpeaa)DE-He213 | |
700 | 1 | |a Leung, Kathy |4 aut | |
700 | 1 | |a Chan, Karen K. L. |4 aut | |
700 | 1 | |a Bai, Yuan |4 aut | |
700 | 1 | |a Jit, Mark |4 aut | |
700 | 1 | |a Wu, Joseph T. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC medicine |d London : BioMed Central, 2003 |g 21(2023), 1 vom: 10. Feb. |w (DE-627)377271225 |w (DE-600)2131669-7 |x 1741-7015 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2023 |g number:1 |g day:10 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12916-023-02748-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2023 |e 1 |b 10 |c 02 |
author_variant |
h c w c hcw hcwc k l kl k k l c kkl kklc y b yb m j mj j t w jt jtw |
---|---|
matchkey_str |
article:17417015:2023----::aiiighcsefcieesfevclcenniteotxoruiepvciainypiiigcennsrtgew |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s12916-023-02748-3 doi (DE-627)SPR051438801 (SPR)s12916-023-02748-3-e DE-627 ger DE-627 rakwb eng Choi, Horace C. W. verfasserin aut Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strategy is likely different for unvaccinated and vaccinated cohorts upon national HPV immunization. However, health authorities typically only provide a one-size-fits-all recommendation for the general population. We aimed to evaluate the cost-effectiveness for determining the optimal screening strategies for vaccinated and unvaccinated cohorts. Methods We considered the women population in Hong Kong which has a unique HPV infection and cervical cancer epidemiology compared to other regions in China and Asia. We used mathematical models which comprise a deterministic age-structured compartmental dynamic component and a stochastic individual-based cohort component to evaluate the cost-effectiveness of screening strategies for cervical screening. Following the recommendations in local guidelines in Hong Kong, we considered strategies that involved cytology, HPV testing, or co-testing as primary cervical screening. We also explored the impacts of adopting alternative de-intensified strategies for vaccinated cohorts. The 3-year cytology screening was used as the base comparator while no screening was also considered for vaccinated cohorts. Women’s lifetime life years, quality-adjusted life years, and costs of screening and treatment were estimated from the societal perspective based on the year 2022 and were discounted by 3% annually. Incremental cost-effectiveness ratios (ICERs) were compared to a willingness to pay (WTP) threshold of one gross domestic product per capita (US $47,792). Probabilistic and one-way sensitivity analyses were conducted. Results Among unvaccinated cohorts, the strategy that adds reflex HPV to triage mild cytology abnormality generated more life years saved than cytology-only screening and could be a cost-effective alternative. Among vaccinated cohorts, when vaccine uptake was 85% (based on the uptake in 2022), all guideline-based strategies (including the cytology-only screening) had ICERs above the WTP threshold when compared with no screening if the vaccine-induced protection duration was 20 years or longer. Under the same conditions, HPV testing with genotyping triage had ICERs (compared with no screening) below the WTP threshold if the routine screening interval was lengthened to 10 and 15 years or screening was initiated at ages 30 and 35 years. Conclusions HPV testing is a cost-effective alternative to cytology for vaccinated cohorts, and the associated optimal screening frequency depends on vaccine uptake. Health authorities should optimize screening recommendations by accounting for population vaccine uptake. Cervical cancer screening (dpeaa)DE-He213 Cost-effectiveness analysis (dpeaa)DE-He213 Population-based screening program (dpeaa)DE-He213 HPV vaccination (dpeaa)DE-He213 Leung, Kathy aut Chan, Karen K. L. aut Bai, Yuan aut Jit, Mark aut Wu, Joseph T. aut Enthalten in BMC medicine London : BioMed Central, 2003 21(2023), 1 vom: 10. Feb. (DE-627)377271225 (DE-600)2131669-7 1741-7015 nnns volume:21 year:2023 number:1 day:10 month:02 https://dx.doi.org/10.1186/s12916-023-02748-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 10 02 |
spelling |
10.1186/s12916-023-02748-3 doi (DE-627)SPR051438801 (SPR)s12916-023-02748-3-e DE-627 ger DE-627 rakwb eng Choi, Horace C. W. verfasserin aut Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strategy is likely different for unvaccinated and vaccinated cohorts upon national HPV immunization. However, health authorities typically only provide a one-size-fits-all recommendation for the general population. We aimed to evaluate the cost-effectiveness for determining the optimal screening strategies for vaccinated and unvaccinated cohorts. Methods We considered the women population in Hong Kong which has a unique HPV infection and cervical cancer epidemiology compared to other regions in China and Asia. We used mathematical models which comprise a deterministic age-structured compartmental dynamic component and a stochastic individual-based cohort component to evaluate the cost-effectiveness of screening strategies for cervical screening. Following the recommendations in local guidelines in Hong Kong, we considered strategies that involved cytology, HPV testing, or co-testing as primary cervical screening. We also explored the impacts of adopting alternative de-intensified strategies for vaccinated cohorts. The 3-year cytology screening was used as the base comparator while no screening was also considered for vaccinated cohorts. Women’s lifetime life years, quality-adjusted life years, and costs of screening and treatment were estimated from the societal perspective based on the year 2022 and were discounted by 3% annually. Incremental cost-effectiveness ratios (ICERs) were compared to a willingness to pay (WTP) threshold of one gross domestic product per capita (US $47,792). Probabilistic and one-way sensitivity analyses were conducted. Results Among unvaccinated cohorts, the strategy that adds reflex HPV to triage mild cytology abnormality generated more life years saved than cytology-only screening and could be a cost-effective alternative. Among vaccinated cohorts, when vaccine uptake was 85% (based on the uptake in 2022), all guideline-based strategies (including the cytology-only screening) had ICERs above the WTP threshold when compared with no screening if the vaccine-induced protection duration was 20 years or longer. Under the same conditions, HPV testing with genotyping triage had ICERs (compared with no screening) below the WTP threshold if the routine screening interval was lengthened to 10 and 15 years or screening was initiated at ages 30 and 35 years. Conclusions HPV testing is a cost-effective alternative to cytology for vaccinated cohorts, and the associated optimal screening frequency depends on vaccine uptake. Health authorities should optimize screening recommendations by accounting for population vaccine uptake. Cervical cancer screening (dpeaa)DE-He213 Cost-effectiveness analysis (dpeaa)DE-He213 Population-based screening program (dpeaa)DE-He213 HPV vaccination (dpeaa)DE-He213 Leung, Kathy aut Chan, Karen K. L. aut Bai, Yuan aut Jit, Mark aut Wu, Joseph T. aut Enthalten in BMC medicine London : BioMed Central, 2003 21(2023), 1 vom: 10. Feb. (DE-627)377271225 (DE-600)2131669-7 1741-7015 nnns volume:21 year:2023 number:1 day:10 month:02 https://dx.doi.org/10.1186/s12916-023-02748-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 10 02 |
allfields_unstemmed |
10.1186/s12916-023-02748-3 doi (DE-627)SPR051438801 (SPR)s12916-023-02748-3-e DE-627 ger DE-627 rakwb eng Choi, Horace C. W. verfasserin aut Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strategy is likely different for unvaccinated and vaccinated cohorts upon national HPV immunization. However, health authorities typically only provide a one-size-fits-all recommendation for the general population. We aimed to evaluate the cost-effectiveness for determining the optimal screening strategies for vaccinated and unvaccinated cohorts. Methods We considered the women population in Hong Kong which has a unique HPV infection and cervical cancer epidemiology compared to other regions in China and Asia. We used mathematical models which comprise a deterministic age-structured compartmental dynamic component and a stochastic individual-based cohort component to evaluate the cost-effectiveness of screening strategies for cervical screening. Following the recommendations in local guidelines in Hong Kong, we considered strategies that involved cytology, HPV testing, or co-testing as primary cervical screening. We also explored the impacts of adopting alternative de-intensified strategies for vaccinated cohorts. The 3-year cytology screening was used as the base comparator while no screening was also considered for vaccinated cohorts. Women’s lifetime life years, quality-adjusted life years, and costs of screening and treatment were estimated from the societal perspective based on the year 2022 and were discounted by 3% annually. Incremental cost-effectiveness ratios (ICERs) were compared to a willingness to pay (WTP) threshold of one gross domestic product per capita (US $47,792). Probabilistic and one-way sensitivity analyses were conducted. Results Among unvaccinated cohorts, the strategy that adds reflex HPV to triage mild cytology abnormality generated more life years saved than cytology-only screening and could be a cost-effective alternative. Among vaccinated cohorts, when vaccine uptake was 85% (based on the uptake in 2022), all guideline-based strategies (including the cytology-only screening) had ICERs above the WTP threshold when compared with no screening if the vaccine-induced protection duration was 20 years or longer. Under the same conditions, HPV testing with genotyping triage had ICERs (compared with no screening) below the WTP threshold if the routine screening interval was lengthened to 10 and 15 years or screening was initiated at ages 30 and 35 years. Conclusions HPV testing is a cost-effective alternative to cytology for vaccinated cohorts, and the associated optimal screening frequency depends on vaccine uptake. Health authorities should optimize screening recommendations by accounting for population vaccine uptake. Cervical cancer screening (dpeaa)DE-He213 Cost-effectiveness analysis (dpeaa)DE-He213 Population-based screening program (dpeaa)DE-He213 HPV vaccination (dpeaa)DE-He213 Leung, Kathy aut Chan, Karen K. L. aut Bai, Yuan aut Jit, Mark aut Wu, Joseph T. aut Enthalten in BMC medicine London : BioMed Central, 2003 21(2023), 1 vom: 10. Feb. (DE-627)377271225 (DE-600)2131669-7 1741-7015 nnns volume:21 year:2023 number:1 day:10 month:02 https://dx.doi.org/10.1186/s12916-023-02748-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 10 02 |
allfieldsGer |
10.1186/s12916-023-02748-3 doi (DE-627)SPR051438801 (SPR)s12916-023-02748-3-e DE-627 ger DE-627 rakwb eng Choi, Horace C. W. verfasserin aut Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strategy is likely different for unvaccinated and vaccinated cohorts upon national HPV immunization. However, health authorities typically only provide a one-size-fits-all recommendation for the general population. We aimed to evaluate the cost-effectiveness for determining the optimal screening strategies for vaccinated and unvaccinated cohorts. Methods We considered the women population in Hong Kong which has a unique HPV infection and cervical cancer epidemiology compared to other regions in China and Asia. We used mathematical models which comprise a deterministic age-structured compartmental dynamic component and a stochastic individual-based cohort component to evaluate the cost-effectiveness of screening strategies for cervical screening. Following the recommendations in local guidelines in Hong Kong, we considered strategies that involved cytology, HPV testing, or co-testing as primary cervical screening. We also explored the impacts of adopting alternative de-intensified strategies for vaccinated cohorts. The 3-year cytology screening was used as the base comparator while no screening was also considered for vaccinated cohorts. Women’s lifetime life years, quality-adjusted life years, and costs of screening and treatment were estimated from the societal perspective based on the year 2022 and were discounted by 3% annually. Incremental cost-effectiveness ratios (ICERs) were compared to a willingness to pay (WTP) threshold of one gross domestic product per capita (US $47,792). Probabilistic and one-way sensitivity analyses were conducted. Results Among unvaccinated cohorts, the strategy that adds reflex HPV to triage mild cytology abnormality generated more life years saved than cytology-only screening and could be a cost-effective alternative. Among vaccinated cohorts, when vaccine uptake was 85% (based on the uptake in 2022), all guideline-based strategies (including the cytology-only screening) had ICERs above the WTP threshold when compared with no screening if the vaccine-induced protection duration was 20 years or longer. Under the same conditions, HPV testing with genotyping triage had ICERs (compared with no screening) below the WTP threshold if the routine screening interval was lengthened to 10 and 15 years or screening was initiated at ages 30 and 35 years. Conclusions HPV testing is a cost-effective alternative to cytology for vaccinated cohorts, and the associated optimal screening frequency depends on vaccine uptake. Health authorities should optimize screening recommendations by accounting for population vaccine uptake. Cervical cancer screening (dpeaa)DE-He213 Cost-effectiveness analysis (dpeaa)DE-He213 Population-based screening program (dpeaa)DE-He213 HPV vaccination (dpeaa)DE-He213 Leung, Kathy aut Chan, Karen K. L. aut Bai, Yuan aut Jit, Mark aut Wu, Joseph T. aut Enthalten in BMC medicine London : BioMed Central, 2003 21(2023), 1 vom: 10. Feb. (DE-627)377271225 (DE-600)2131669-7 1741-7015 nnns volume:21 year:2023 number:1 day:10 month:02 https://dx.doi.org/10.1186/s12916-023-02748-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 10 02 |
allfieldsSound |
10.1186/s12916-023-02748-3 doi (DE-627)SPR051438801 (SPR)s12916-023-02748-3-e DE-627 ger DE-627 rakwb eng Choi, Horace C. W. verfasserin aut Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strategy is likely different for unvaccinated and vaccinated cohorts upon national HPV immunization. However, health authorities typically only provide a one-size-fits-all recommendation for the general population. We aimed to evaluate the cost-effectiveness for determining the optimal screening strategies for vaccinated and unvaccinated cohorts. Methods We considered the women population in Hong Kong which has a unique HPV infection and cervical cancer epidemiology compared to other regions in China and Asia. We used mathematical models which comprise a deterministic age-structured compartmental dynamic component and a stochastic individual-based cohort component to evaluate the cost-effectiveness of screening strategies for cervical screening. Following the recommendations in local guidelines in Hong Kong, we considered strategies that involved cytology, HPV testing, or co-testing as primary cervical screening. We also explored the impacts of adopting alternative de-intensified strategies for vaccinated cohorts. The 3-year cytology screening was used as the base comparator while no screening was also considered for vaccinated cohorts. Women’s lifetime life years, quality-adjusted life years, and costs of screening and treatment were estimated from the societal perspective based on the year 2022 and were discounted by 3% annually. Incremental cost-effectiveness ratios (ICERs) were compared to a willingness to pay (WTP) threshold of one gross domestic product per capita (US $47,792). Probabilistic and one-way sensitivity analyses were conducted. Results Among unvaccinated cohorts, the strategy that adds reflex HPV to triage mild cytology abnormality generated more life years saved than cytology-only screening and could be a cost-effective alternative. Among vaccinated cohorts, when vaccine uptake was 85% (based on the uptake in 2022), all guideline-based strategies (including the cytology-only screening) had ICERs above the WTP threshold when compared with no screening if the vaccine-induced protection duration was 20 years or longer. Under the same conditions, HPV testing with genotyping triage had ICERs (compared with no screening) below the WTP threshold if the routine screening interval was lengthened to 10 and 15 years or screening was initiated at ages 30 and 35 years. Conclusions HPV testing is a cost-effective alternative to cytology for vaccinated cohorts, and the associated optimal screening frequency depends on vaccine uptake. Health authorities should optimize screening recommendations by accounting for population vaccine uptake. Cervical cancer screening (dpeaa)DE-He213 Cost-effectiveness analysis (dpeaa)DE-He213 Population-based screening program (dpeaa)DE-He213 HPV vaccination (dpeaa)DE-He213 Leung, Kathy aut Chan, Karen K. L. aut Bai, Yuan aut Jit, Mark aut Wu, Joseph T. aut Enthalten in BMC medicine London : BioMed Central, 2003 21(2023), 1 vom: 10. Feb. (DE-627)377271225 (DE-600)2131669-7 1741-7015 nnns volume:21 year:2023 number:1 day:10 month:02 https://dx.doi.org/10.1186/s12916-023-02748-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 10 02 |
language |
English |
source |
Enthalten in BMC medicine 21(2023), 1 vom: 10. Feb. volume:21 year:2023 number:1 day:10 month:02 |
sourceStr |
Enthalten in BMC medicine 21(2023), 1 vom: 10. Feb. volume:21 year:2023 number:1 day:10 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cervical cancer screening Cost-effectiveness analysis Population-based screening program HPV vaccination |
isfreeaccess_bool |
true |
container_title |
BMC medicine |
authorswithroles_txt_mv |
Choi, Horace C. W. @@aut@@ Leung, Kathy @@aut@@ Chan, Karen K. L. @@aut@@ Bai, Yuan @@aut@@ Jit, Mark @@aut@@ Wu, Joseph T. @@aut@@ |
publishDateDaySort_date |
2023-02-10T00:00:00Z |
hierarchy_top_id |
377271225 |
id |
SPR051438801 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051438801</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510062655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12916-023-02748-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051438801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12916-023-02748-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Choi, Horace C. W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strategy is likely different for unvaccinated and vaccinated cohorts upon national HPV immunization. However, health authorities typically only provide a one-size-fits-all recommendation for the general population. We aimed to evaluate the cost-effectiveness for determining the optimal screening strategies for vaccinated and unvaccinated cohorts. Methods We considered the women population in Hong Kong which has a unique HPV infection and cervical cancer epidemiology compared to other regions in China and Asia. We used mathematical models which comprise a deterministic age-structured compartmental dynamic component and a stochastic individual-based cohort component to evaluate the cost-effectiveness of screening strategies for cervical screening. Following the recommendations in local guidelines in Hong Kong, we considered strategies that involved cytology, HPV testing, or co-testing as primary cervical screening. We also explored the impacts of adopting alternative de-intensified strategies for vaccinated cohorts. The 3-year cytology screening was used as the base comparator while no screening was also considered for vaccinated cohorts. Women’s lifetime life years, quality-adjusted life years, and costs of screening and treatment were estimated from the societal perspective based on the year 2022 and were discounted by 3% annually. Incremental cost-effectiveness ratios (ICERs) were compared to a willingness to pay (WTP) threshold of one gross domestic product per capita (US $47,792). Probabilistic and one-way sensitivity analyses were conducted. Results Among unvaccinated cohorts, the strategy that adds reflex HPV to triage mild cytology abnormality generated more life years saved than cytology-only screening and could be a cost-effective alternative. Among vaccinated cohorts, when vaccine uptake was 85% (based on the uptake in 2022), all guideline-based strategies (including the cytology-only screening) had ICERs above the WTP threshold when compared with no screening if the vaccine-induced protection duration was 20 years or longer. Under the same conditions, HPV testing with genotyping triage had ICERs (compared with no screening) below the WTP threshold if the routine screening interval was lengthened to 10 and 15 years or screening was initiated at ages 30 and 35 years. Conclusions HPV testing is a cost-effective alternative to cytology for vaccinated cohorts, and the associated optimal screening frequency depends on vaccine uptake. Health authorities should optimize screening recommendations by accounting for population vaccine uptake.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cervical cancer screening</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost-effectiveness analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Population-based screening program</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HPV vaccination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leung, Kathy</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, Karen K. L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bai, Yuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jit, Mark</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Joseph T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">21(2023), 1 vom: 10. Feb.</subfield><subfield code="w">(DE-627)377271225</subfield><subfield code="w">(DE-600)2131669-7</subfield><subfield code="x">1741-7015</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:10</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12916-023-02748-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">10</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Choi, Horace C. W. |
spellingShingle |
Choi, Horace C. W. misc Cervical cancer screening misc Cost-effectiveness analysis misc Population-based screening program misc HPV vaccination Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis |
authorStr |
Choi, Horace C. W. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)377271225 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1741-7015 |
topic_title |
Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis Cervical cancer screening (dpeaa)DE-He213 Cost-effectiveness analysis (dpeaa)DE-He213 Population-based screening program (dpeaa)DE-He213 HPV vaccination (dpeaa)DE-He213 |
topic |
misc Cervical cancer screening misc Cost-effectiveness analysis misc Population-based screening program misc HPV vaccination |
topic_unstemmed |
misc Cervical cancer screening misc Cost-effectiveness analysis misc Population-based screening program misc HPV vaccination |
topic_browse |
misc Cervical cancer screening misc Cost-effectiveness analysis misc Population-based screening program misc HPV vaccination |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC medicine |
hierarchy_parent_id |
377271225 |
hierarchy_top_title |
BMC medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)377271225 (DE-600)2131669-7 |
title |
Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis |
ctrlnum |
(DE-627)SPR051438801 (SPR)s12916-023-02748-3-e |
title_full |
Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis |
author_sort |
Choi, Horace C. W. |
journal |
BMC medicine |
journalStr |
BMC medicine |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Choi, Horace C. W. Leung, Kathy Chan, Karen K. L. Bai, Yuan Jit, Mark Wu, Joseph T. |
container_volume |
21 |
format_se |
Elektronische Aufsätze |
author-letter |
Choi, Horace C. W. |
doi_str_mv |
10.1186/s12916-023-02748-3 |
title_sort |
maximizing the cost-effectiveness of cervical screening in the context of routine hpv vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis |
title_auth |
Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis |
abstract |
Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strategy is likely different for unvaccinated and vaccinated cohorts upon national HPV immunization. However, health authorities typically only provide a one-size-fits-all recommendation for the general population. We aimed to evaluate the cost-effectiveness for determining the optimal screening strategies for vaccinated and unvaccinated cohorts. Methods We considered the women population in Hong Kong which has a unique HPV infection and cervical cancer epidemiology compared to other regions in China and Asia. We used mathematical models which comprise a deterministic age-structured compartmental dynamic component and a stochastic individual-based cohort component to evaluate the cost-effectiveness of screening strategies for cervical screening. Following the recommendations in local guidelines in Hong Kong, we considered strategies that involved cytology, HPV testing, or co-testing as primary cervical screening. We also explored the impacts of adopting alternative de-intensified strategies for vaccinated cohorts. The 3-year cytology screening was used as the base comparator while no screening was also considered for vaccinated cohorts. Women’s lifetime life years, quality-adjusted life years, and costs of screening and treatment were estimated from the societal perspective based on the year 2022 and were discounted by 3% annually. Incremental cost-effectiveness ratios (ICERs) were compared to a willingness to pay (WTP) threshold of one gross domestic product per capita (US $47,792). Probabilistic and one-way sensitivity analyses were conducted. Results Among unvaccinated cohorts, the strategy that adds reflex HPV to triage mild cytology abnormality generated more life years saved than cytology-only screening and could be a cost-effective alternative. Among vaccinated cohorts, when vaccine uptake was 85% (based on the uptake in 2022), all guideline-based strategies (including the cytology-only screening) had ICERs above the WTP threshold when compared with no screening if the vaccine-induced protection duration was 20 years or longer. Under the same conditions, HPV testing with genotyping triage had ICERs (compared with no screening) below the WTP threshold if the routine screening interval was lengthened to 10 and 15 years or screening was initiated at ages 30 and 35 years. Conclusions HPV testing is a cost-effective alternative to cytology for vaccinated cohorts, and the associated optimal screening frequency depends on vaccine uptake. Health authorities should optimize screening recommendations by accounting for population vaccine uptake. © The Author(s) 2023 |
abstractGer |
Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strategy is likely different for unvaccinated and vaccinated cohorts upon national HPV immunization. However, health authorities typically only provide a one-size-fits-all recommendation for the general population. We aimed to evaluate the cost-effectiveness for determining the optimal screening strategies for vaccinated and unvaccinated cohorts. Methods We considered the women population in Hong Kong which has a unique HPV infection and cervical cancer epidemiology compared to other regions in China and Asia. We used mathematical models which comprise a deterministic age-structured compartmental dynamic component and a stochastic individual-based cohort component to evaluate the cost-effectiveness of screening strategies for cervical screening. Following the recommendations in local guidelines in Hong Kong, we considered strategies that involved cytology, HPV testing, or co-testing as primary cervical screening. We also explored the impacts of adopting alternative de-intensified strategies for vaccinated cohorts. The 3-year cytology screening was used as the base comparator while no screening was also considered for vaccinated cohorts. Women’s lifetime life years, quality-adjusted life years, and costs of screening and treatment were estimated from the societal perspective based on the year 2022 and were discounted by 3% annually. Incremental cost-effectiveness ratios (ICERs) were compared to a willingness to pay (WTP) threshold of one gross domestic product per capita (US $47,792). Probabilistic and one-way sensitivity analyses were conducted. Results Among unvaccinated cohorts, the strategy that adds reflex HPV to triage mild cytology abnormality generated more life years saved than cytology-only screening and could be a cost-effective alternative. Among vaccinated cohorts, when vaccine uptake was 85% (based on the uptake in 2022), all guideline-based strategies (including the cytology-only screening) had ICERs above the WTP threshold when compared with no screening if the vaccine-induced protection duration was 20 years or longer. Under the same conditions, HPV testing with genotyping triage had ICERs (compared with no screening) below the WTP threshold if the routine screening interval was lengthened to 10 and 15 years or screening was initiated at ages 30 and 35 years. Conclusions HPV testing is a cost-effective alternative to cytology for vaccinated cohorts, and the associated optimal screening frequency depends on vaccine uptake. Health authorities should optimize screening recommendations by accounting for population vaccine uptake. © The Author(s) 2023 |
abstract_unstemmed |
Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strategy is likely different for unvaccinated and vaccinated cohorts upon national HPV immunization. However, health authorities typically only provide a one-size-fits-all recommendation for the general population. We aimed to evaluate the cost-effectiveness for determining the optimal screening strategies for vaccinated and unvaccinated cohorts. Methods We considered the women population in Hong Kong which has a unique HPV infection and cervical cancer epidemiology compared to other regions in China and Asia. We used mathematical models which comprise a deterministic age-structured compartmental dynamic component and a stochastic individual-based cohort component to evaluate the cost-effectiveness of screening strategies for cervical screening. Following the recommendations in local guidelines in Hong Kong, we considered strategies that involved cytology, HPV testing, or co-testing as primary cervical screening. We also explored the impacts of adopting alternative de-intensified strategies for vaccinated cohorts. The 3-year cytology screening was used as the base comparator while no screening was also considered for vaccinated cohorts. Women’s lifetime life years, quality-adjusted life years, and costs of screening and treatment were estimated from the societal perspective based on the year 2022 and were discounted by 3% annually. Incremental cost-effectiveness ratios (ICERs) were compared to a willingness to pay (WTP) threshold of one gross domestic product per capita (US $47,792). Probabilistic and one-way sensitivity analyses were conducted. Results Among unvaccinated cohorts, the strategy that adds reflex HPV to triage mild cytology abnormality generated more life years saved than cytology-only screening and could be a cost-effective alternative. Among vaccinated cohorts, when vaccine uptake was 85% (based on the uptake in 2022), all guideline-based strategies (including the cytology-only screening) had ICERs above the WTP threshold when compared with no screening if the vaccine-induced protection duration was 20 years or longer. Under the same conditions, HPV testing with genotyping triage had ICERs (compared with no screening) below the WTP threshold if the routine screening interval was lengthened to 10 and 15 years or screening was initiated at ages 30 and 35 years. Conclusions HPV testing is a cost-effective alternative to cytology for vaccinated cohorts, and the associated optimal screening frequency depends on vaccine uptake. Health authorities should optimize screening recommendations by accounting for population vaccine uptake. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis |
url |
https://dx.doi.org/10.1186/s12916-023-02748-3 |
remote_bool |
true |
author2 |
Leung, Kathy Chan, Karen K. L. Bai, Yuan Jit, Mark Wu, Joseph T. |
author2Str |
Leung, Kathy Chan, Karen K. L. Bai, Yuan Jit, Mark Wu, Joseph T. |
ppnlink |
377271225 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12916-023-02748-3 |
up_date |
2024-07-03T21:49:17.352Z |
_version_ |
1803596183486070784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051438801</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510062655.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12916-023-02748-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051438801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12916-023-02748-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Choi, Horace C. W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maximizing the cost-effectiveness of cervical screening in the context of routine HPV vaccination by optimizing screening strategies with respect to vaccine uptake: a modeling analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Regarding primary and secondary cervical cancer prevention, the World Health Organization proposed the cervical cancer elimination strategy that requires countries to achieve 90% uptake of human papillomavirus (HPV) vaccines and 70% screening uptake. The optimal cervical screening strategy is likely different for unvaccinated and vaccinated cohorts upon national HPV immunization. However, health authorities typically only provide a one-size-fits-all recommendation for the general population. We aimed to evaluate the cost-effectiveness for determining the optimal screening strategies for vaccinated and unvaccinated cohorts. Methods We considered the women population in Hong Kong which has a unique HPV infection and cervical cancer epidemiology compared to other regions in China and Asia. We used mathematical models which comprise a deterministic age-structured compartmental dynamic component and a stochastic individual-based cohort component to evaluate the cost-effectiveness of screening strategies for cervical screening. Following the recommendations in local guidelines in Hong Kong, we considered strategies that involved cytology, HPV testing, or co-testing as primary cervical screening. We also explored the impacts of adopting alternative de-intensified strategies for vaccinated cohorts. The 3-year cytology screening was used as the base comparator while no screening was also considered for vaccinated cohorts. Women’s lifetime life years, quality-adjusted life years, and costs of screening and treatment were estimated from the societal perspective based on the year 2022 and were discounted by 3% annually. Incremental cost-effectiveness ratios (ICERs) were compared to a willingness to pay (WTP) threshold of one gross domestic product per capita (US $47,792). Probabilistic and one-way sensitivity analyses were conducted. Results Among unvaccinated cohorts, the strategy that adds reflex HPV to triage mild cytology abnormality generated more life years saved than cytology-only screening and could be a cost-effective alternative. Among vaccinated cohorts, when vaccine uptake was 85% (based on the uptake in 2022), all guideline-based strategies (including the cytology-only screening) had ICERs above the WTP threshold when compared with no screening if the vaccine-induced protection duration was 20 years or longer. Under the same conditions, HPV testing with genotyping triage had ICERs (compared with no screening) below the WTP threshold if the routine screening interval was lengthened to 10 and 15 years or screening was initiated at ages 30 and 35 years. Conclusions HPV testing is a cost-effective alternative to cytology for vaccinated cohorts, and the associated optimal screening frequency depends on vaccine uptake. Health authorities should optimize screening recommendations by accounting for population vaccine uptake.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cervical cancer screening</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost-effectiveness analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Population-based screening program</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">HPV vaccination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Leung, Kathy</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, Karen K. L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bai, Yuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jit, Mark</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Joseph T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">21(2023), 1 vom: 10. Feb.</subfield><subfield code="w">(DE-627)377271225</subfield><subfield code="w">(DE-600)2131669-7</subfield><subfield code="x">1741-7015</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:10</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12916-023-02748-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">10</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.398183 |