Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study
Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influ...
Ausführliche Beschreibung
Autor*in: |
Zhang, Xingxing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Infectious diseases of poverty - London : Biomed Central, 2012, 12(2023), 1 vom: 16. Feb. |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2023 ; number:1 ; day:16 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s40249-023-01061-8 |
---|
Katalog-ID: |
SPR051461080 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR051461080 | ||
003 | DE-627 | ||
005 | 20230510063314.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s40249-023-01061-8 |2 doi | |
035 | |a (DE-627)SPR051461080 | ||
035 | |a (SPR)s40249-023-01061-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhang, Xingxing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing and the Hong Kong Special Administrative Region (SAR) of China. Methods We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evaluate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal driving factors in the above settings in 2020–2021. Results The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% confidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and “Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restrictions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR. Conclusions Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe influenza strains or other respiratory infections in future. Graphical Abstract | ||
650 | 4 | |a Influenza-like illness |7 (dpeaa)DE-He213 | |
650 | 4 | |a Non-pharmaceutical intervention |7 (dpeaa)DE-He213 | |
650 | 4 | |a COVID-19 |7 (dpeaa)DE-He213 | |
650 | 4 | |a SARS-CoV-2 |7 (dpeaa)DE-He213 | |
650 | 4 | |a Influenza |7 (dpeaa)DE-He213 | |
650 | 4 | |a China |7 (dpeaa)DE-He213 | |
700 | 1 | |a Du, Jing |4 aut | |
700 | 1 | |a Li, Gang |4 aut | |
700 | 1 | |a Chen, Teng |4 aut | |
700 | 1 | |a Yang, Jin |4 aut | |
700 | 1 | |a Yang, Jiao |4 aut | |
700 | 1 | |a Zhang, Ting |4 aut | |
700 | 1 | |a Wang, Qing |4 aut | |
700 | 1 | |a Yang, Liuyang |4 aut | |
700 | 1 | |a Lai, Shengjie |0 (orcid)0000-0001-9781-8148 |4 aut | |
700 | 1 | |a Feng, Luzhao |4 aut | |
700 | 1 | |a Yang, Weizhong |0 (orcid)0000-0002-6599-825X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Infectious diseases of poverty |d London : Biomed Central, 2012 |g 12(2023), 1 vom: 16. Feb. |w (DE-627)72939476X |w (DE-600)2689396-4 |x 2049-9957 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2023 |g number:1 |g day:16 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s40249-023-01061-8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2023 |e 1 |b 16 |c 02 |
author_variant |
x z xz j d jd g l gl t c tc j y jy j y jy t z tz q w qw l y ly s l sl l f lf w y wy |
---|---|
matchkey_str |
article:20499957:2023----::sesntematfoi1itretosnnlezlkilesnejnadogogn |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s40249-023-01061-8 doi (DE-627)SPR051461080 (SPR)s40249-023-01061-8-e DE-627 ger DE-627 rakwb eng Zhang, Xingxing verfasserin aut Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing and the Hong Kong Special Administrative Region (SAR) of China. Methods We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evaluate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal driving factors in the above settings in 2020–2021. Results The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% confidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and “Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restrictions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR. Conclusions Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe influenza strains or other respiratory infections in future. Graphical Abstract Influenza-like illness (dpeaa)DE-He213 Non-pharmaceutical intervention (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 SARS-CoV-2 (dpeaa)DE-He213 Influenza (dpeaa)DE-He213 China (dpeaa)DE-He213 Du, Jing aut Li, Gang aut Chen, Teng aut Yang, Jin aut Yang, Jiao aut Zhang, Ting aut Wang, Qing aut Yang, Liuyang aut Lai, Shengjie (orcid)0000-0001-9781-8148 aut Feng, Luzhao aut Yang, Weizhong (orcid)0000-0002-6599-825X aut Enthalten in Infectious diseases of poverty London : Biomed Central, 2012 12(2023), 1 vom: 16. Feb. (DE-627)72939476X (DE-600)2689396-4 2049-9957 nnns volume:12 year:2023 number:1 day:16 month:02 https://dx.doi.org/10.1186/s40249-023-01061-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 1 16 02 |
spelling |
10.1186/s40249-023-01061-8 doi (DE-627)SPR051461080 (SPR)s40249-023-01061-8-e DE-627 ger DE-627 rakwb eng Zhang, Xingxing verfasserin aut Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing and the Hong Kong Special Administrative Region (SAR) of China. Methods We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evaluate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal driving factors in the above settings in 2020–2021. Results The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% confidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and “Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restrictions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR. Conclusions Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe influenza strains or other respiratory infections in future. Graphical Abstract Influenza-like illness (dpeaa)DE-He213 Non-pharmaceutical intervention (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 SARS-CoV-2 (dpeaa)DE-He213 Influenza (dpeaa)DE-He213 China (dpeaa)DE-He213 Du, Jing aut Li, Gang aut Chen, Teng aut Yang, Jin aut Yang, Jiao aut Zhang, Ting aut Wang, Qing aut Yang, Liuyang aut Lai, Shengjie (orcid)0000-0001-9781-8148 aut Feng, Luzhao aut Yang, Weizhong (orcid)0000-0002-6599-825X aut Enthalten in Infectious diseases of poverty London : Biomed Central, 2012 12(2023), 1 vom: 16. Feb. (DE-627)72939476X (DE-600)2689396-4 2049-9957 nnns volume:12 year:2023 number:1 day:16 month:02 https://dx.doi.org/10.1186/s40249-023-01061-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 1 16 02 |
allfields_unstemmed |
10.1186/s40249-023-01061-8 doi (DE-627)SPR051461080 (SPR)s40249-023-01061-8-e DE-627 ger DE-627 rakwb eng Zhang, Xingxing verfasserin aut Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing and the Hong Kong Special Administrative Region (SAR) of China. Methods We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evaluate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal driving factors in the above settings in 2020–2021. Results The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% confidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and “Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restrictions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR. Conclusions Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe influenza strains or other respiratory infections in future. Graphical Abstract Influenza-like illness (dpeaa)DE-He213 Non-pharmaceutical intervention (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 SARS-CoV-2 (dpeaa)DE-He213 Influenza (dpeaa)DE-He213 China (dpeaa)DE-He213 Du, Jing aut Li, Gang aut Chen, Teng aut Yang, Jin aut Yang, Jiao aut Zhang, Ting aut Wang, Qing aut Yang, Liuyang aut Lai, Shengjie (orcid)0000-0001-9781-8148 aut Feng, Luzhao aut Yang, Weizhong (orcid)0000-0002-6599-825X aut Enthalten in Infectious diseases of poverty London : Biomed Central, 2012 12(2023), 1 vom: 16. Feb. (DE-627)72939476X (DE-600)2689396-4 2049-9957 nnns volume:12 year:2023 number:1 day:16 month:02 https://dx.doi.org/10.1186/s40249-023-01061-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 1 16 02 |
allfieldsGer |
10.1186/s40249-023-01061-8 doi (DE-627)SPR051461080 (SPR)s40249-023-01061-8-e DE-627 ger DE-627 rakwb eng Zhang, Xingxing verfasserin aut Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing and the Hong Kong Special Administrative Region (SAR) of China. Methods We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evaluate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal driving factors in the above settings in 2020–2021. Results The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% confidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and “Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restrictions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR. Conclusions Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe influenza strains or other respiratory infections in future. Graphical Abstract Influenza-like illness (dpeaa)DE-He213 Non-pharmaceutical intervention (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 SARS-CoV-2 (dpeaa)DE-He213 Influenza (dpeaa)DE-He213 China (dpeaa)DE-He213 Du, Jing aut Li, Gang aut Chen, Teng aut Yang, Jin aut Yang, Jiao aut Zhang, Ting aut Wang, Qing aut Yang, Liuyang aut Lai, Shengjie (orcid)0000-0001-9781-8148 aut Feng, Luzhao aut Yang, Weizhong (orcid)0000-0002-6599-825X aut Enthalten in Infectious diseases of poverty London : Biomed Central, 2012 12(2023), 1 vom: 16. Feb. (DE-627)72939476X (DE-600)2689396-4 2049-9957 nnns volume:12 year:2023 number:1 day:16 month:02 https://dx.doi.org/10.1186/s40249-023-01061-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 1 16 02 |
allfieldsSound |
10.1186/s40249-023-01061-8 doi (DE-627)SPR051461080 (SPR)s40249-023-01061-8-e DE-627 ger DE-627 rakwb eng Zhang, Xingxing verfasserin aut Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing and the Hong Kong Special Administrative Region (SAR) of China. Methods We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evaluate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal driving factors in the above settings in 2020–2021. Results The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% confidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and “Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restrictions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR. Conclusions Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe influenza strains or other respiratory infections in future. Graphical Abstract Influenza-like illness (dpeaa)DE-He213 Non-pharmaceutical intervention (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 SARS-CoV-2 (dpeaa)DE-He213 Influenza (dpeaa)DE-He213 China (dpeaa)DE-He213 Du, Jing aut Li, Gang aut Chen, Teng aut Yang, Jin aut Yang, Jiao aut Zhang, Ting aut Wang, Qing aut Yang, Liuyang aut Lai, Shengjie (orcid)0000-0001-9781-8148 aut Feng, Luzhao aut Yang, Weizhong (orcid)0000-0002-6599-825X aut Enthalten in Infectious diseases of poverty London : Biomed Central, 2012 12(2023), 1 vom: 16. Feb. (DE-627)72939476X (DE-600)2689396-4 2049-9957 nnns volume:12 year:2023 number:1 day:16 month:02 https://dx.doi.org/10.1186/s40249-023-01061-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2023 1 16 02 |
language |
English |
source |
Enthalten in Infectious diseases of poverty 12(2023), 1 vom: 16. Feb. volume:12 year:2023 number:1 day:16 month:02 |
sourceStr |
Enthalten in Infectious diseases of poverty 12(2023), 1 vom: 16. Feb. volume:12 year:2023 number:1 day:16 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Influenza-like illness Non-pharmaceutical intervention COVID-19 SARS-CoV-2 Influenza China |
isfreeaccess_bool |
true |
container_title |
Infectious diseases of poverty |
authorswithroles_txt_mv |
Zhang, Xingxing @@aut@@ Du, Jing @@aut@@ Li, Gang @@aut@@ Chen, Teng @@aut@@ Yang, Jin @@aut@@ Yang, Jiao @@aut@@ Zhang, Ting @@aut@@ Wang, Qing @@aut@@ Yang, Liuyang @@aut@@ Lai, Shengjie @@aut@@ Feng, Luzhao @@aut@@ Yang, Weizhong @@aut@@ |
publishDateDaySort_date |
2023-02-16T00:00:00Z |
hierarchy_top_id |
72939476X |
id |
SPR051461080 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051461080</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510063314.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40249-023-01061-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051461080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40249-023-01061-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Xingxing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing and the Hong Kong Special Administrative Region (SAR) of China. Methods We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evaluate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal driving factors in the above settings in 2020–2021. Results The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% confidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and “Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restrictions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR. Conclusions Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe influenza strains or other respiratory infections in future. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Influenza-like illness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-pharmaceutical intervention</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SARS-CoV-2</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Influenza</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">China</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Gang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Teng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ting</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Liuyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Shengjie</subfield><subfield code="0">(orcid)0000-0001-9781-8148</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Luzhao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Weizhong</subfield><subfield code="0">(orcid)0000-0002-6599-825X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Infectious diseases of poverty</subfield><subfield code="d">London : Biomed Central, 2012</subfield><subfield code="g">12(2023), 1 vom: 16. Feb.</subfield><subfield code="w">(DE-627)72939476X</subfield><subfield code="w">(DE-600)2689396-4</subfield><subfield code="x">2049-9957</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:16</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40249-023-01061-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">16</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Zhang, Xingxing |
spellingShingle |
Zhang, Xingxing misc Influenza-like illness misc Non-pharmaceutical intervention misc COVID-19 misc SARS-CoV-2 misc Influenza misc China Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study |
authorStr |
Zhang, Xingxing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)72939476X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2049-9957 |
topic_title |
Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study Influenza-like illness (dpeaa)DE-He213 Non-pharmaceutical intervention (dpeaa)DE-He213 COVID-19 (dpeaa)DE-He213 SARS-CoV-2 (dpeaa)DE-He213 Influenza (dpeaa)DE-He213 China (dpeaa)DE-He213 |
topic |
misc Influenza-like illness misc Non-pharmaceutical intervention misc COVID-19 misc SARS-CoV-2 misc Influenza misc China |
topic_unstemmed |
misc Influenza-like illness misc Non-pharmaceutical intervention misc COVID-19 misc SARS-CoV-2 misc Influenza misc China |
topic_browse |
misc Influenza-like illness misc Non-pharmaceutical intervention misc COVID-19 misc SARS-CoV-2 misc Influenza misc China |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Infectious diseases of poverty |
hierarchy_parent_id |
72939476X |
hierarchy_top_title |
Infectious diseases of poverty |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)72939476X (DE-600)2689396-4 |
title |
Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study |
ctrlnum |
(DE-627)SPR051461080 (SPR)s40249-023-01061-8-e |
title_full |
Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study |
author_sort |
Zhang, Xingxing |
journal |
Infectious diseases of poverty |
journalStr |
Infectious diseases of poverty |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Zhang, Xingxing Du, Jing Li, Gang Chen, Teng Yang, Jin Yang, Jiao Zhang, Ting Wang, Qing Yang, Liuyang Lai, Shengjie Feng, Luzhao Yang, Weizhong |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Xingxing |
doi_str_mv |
10.1186/s40249-023-01061-8 |
normlink |
(ORCID)0000-0001-9781-8148 (ORCID)0000-0002-6599-825X |
normlink_prefix_str_mv |
(orcid)0000-0001-9781-8148 (orcid)0000-0002-6599-825X |
title_sort |
assessing the impact of covid-19 interventions on influenza-like illness in beijing and hong kong: an observational and modeling study |
title_auth |
Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study |
abstract |
Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing and the Hong Kong Special Administrative Region (SAR) of China. Methods We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evaluate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal driving factors in the above settings in 2020–2021. Results The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% confidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and “Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restrictions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR. Conclusions Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe influenza strains or other respiratory infections in future. Graphical Abstract © The Author(s) 2023 |
abstractGer |
Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing and the Hong Kong Special Administrative Region (SAR) of China. Methods We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evaluate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal driving factors in the above settings in 2020–2021. Results The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% confidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and “Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restrictions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR. Conclusions Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe influenza strains or other respiratory infections in future. Graphical Abstract © The Author(s) 2023 |
abstract_unstemmed |
Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing and the Hong Kong Special Administrative Region (SAR) of China. Methods We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evaluate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal driving factors in the above settings in 2020–2021. Results The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% confidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and “Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restrictions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR. Conclusions Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe influenza strains or other respiratory infections in future. Graphical Abstract © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study |
url |
https://dx.doi.org/10.1186/s40249-023-01061-8 |
remote_bool |
true |
author2 |
Du, Jing Li, Gang Chen, Teng Yang, Jin Yang, Jiao Zhang, Ting Wang, Qing Yang, Liuyang Lai, Shengjie Feng, Luzhao Yang, Weizhong |
author2Str |
Du, Jing Li, Gang Chen, Teng Yang, Jin Yang, Jiao Zhang, Ting Wang, Qing Yang, Liuyang Lai, Shengjie Feng, Luzhao Yang, Weizhong |
ppnlink |
72939476X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s40249-023-01061-8 |
up_date |
2024-07-03T21:57:17.893Z |
_version_ |
1803596687365636096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051461080</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510063314.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s40249-023-01061-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051461080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40249-023-01061-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Xingxing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Assessing the impact of COVID-19 interventions on influenza-like illness in Beijing and Hong Kong: an observational and modeling study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The impact of coronavirus diseases 2019 (COVID-19) related non-pharmaceutical interventions (NPIs) on influenza activity in the presence of other known seasonal driving factors is unclear, especially at the municipal scale. This study aimed to assess the impact of NPIs on outpatient influenza-like illness (ILI) consultations in Beijing and the Hong Kong Special Administrative Region (SAR) of China. Methods We descriptively analyzed the temporal characteristics of the weekly ILI counts, nine NPI indicators, mean temperature, relative humidity, and absolute humidity from 2011 to 2021. Generalized additive models (GAM) using data in 2011–2019 were established to predict the weekly ILI counts under a counterfactual scenario of no COVID-19 interventions in Beijing and the Hong Kong SAR in 2020–2021, respectively. GAM models were further built to evaluate the potential impact of each individual or combined NPIs on weekly ILI counts in the presence of other seasonal driving factors in the above settings in 2020–2021. Results The weekly ILI counts in Beijing and the Hong Kong SAR fluctuated across years and months in 2011–2019, with an obvious winter-spring seasonality in Beijing. During the 2020–2021 season, the observed weekly ILI counts in both Beijing and the Hong Kong SAR were much lower than those of the past 9 flu seasons, with a 47.5% [95% confidence interval (CI): 42.3%, 52.2%) and 60.0% (95% CI: 58.6%, 61.1%) reduction, respectively. The observed numbers for these two cities also accounted for only 40.2% (95% CI: 35.4%, 45.3%) and 58.0% (95% CI: 54.1%, 61.5%) of the GAM model estimates in the absence of COVID-19 NPIs, respectively. Our study revealed that, “Cancelling public events” and “Restrictions on internal travel” measures played an important role in the reduction of ILI in Beijing, while the “restrictions on international travel” was statistically most associated with ILI reductions in the Hong Kong SAR. Conclusions Our study suggests that COVID-19 NPIs had been reducing outpatient ILI consultations in the presence of other seasonal driving factors in Beijing and the Hong Kong SAR from 2020 to 2021. In cities with varying local circumstances, some NPIs with appropriate stringency may be tailored to reduce the burden of ILI caused by severe influenza strains or other respiratory infections in future. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Influenza-like illness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-pharmaceutical intervention</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SARS-CoV-2</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Influenza</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">China</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Gang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Teng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ting</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Liuyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lai, Shengjie</subfield><subfield code="0">(orcid)0000-0001-9781-8148</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Luzhao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Weizhong</subfield><subfield code="0">(orcid)0000-0002-6599-825X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Infectious diseases of poverty</subfield><subfield code="d">London : Biomed Central, 2012</subfield><subfield code="g">12(2023), 1 vom: 16. Feb.</subfield><subfield code="w">(DE-627)72939476X</subfield><subfield code="w">(DE-600)2689396-4</subfield><subfield code="x">2049-9957</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:16</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s40249-023-01061-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">16</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.4001484 |