Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair
Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endot...
Ausführliche Beschreibung
Autor*in: |
Zhang, Yanwen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
artificial membraneless organelles |
---|
Anmerkung: |
© Science China Press 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Asheville, NC : Science in China Press, 1995, 66(2023), 3 vom: 03. Feb., Seite 845-852 |
---|---|
Übergeordnetes Werk: |
volume:66 ; year:2023 ; number:3 ; day:03 ; month:02 ; pages:845-852 |
Links: |
---|
DOI / URN: |
10.1007/s11426-022-1491-0 |
---|
Katalog-ID: |
SPR051466198 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR051466198 | ||
003 | DE-627 | ||
005 | 20230510063509.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11426-022-1491-0 |2 doi | |
035 | |a (DE-627)SPR051466198 | ||
035 | |a (SPR)s11426-022-1491-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhang, Yanwen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Science China Press 2023 | ||
520 | |a Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy. | ||
650 | 4 | |a artificial membraneless organelles |7 (dpeaa)DE-He213 | |
650 | 4 | |a coacervate microdroplets |7 (dpeaa)DE-He213 | |
650 | 4 | |a nitric oxide |7 (dpeaa)DE-He213 | |
650 | 4 | |a liquid-liquid phase separation |7 (dpeaa)DE-He213 | |
650 | 4 | |a cell repair |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Shixin |4 aut | |
700 | 1 | |a Yan, Yuling |4 aut | |
700 | 1 | |a He, Xiaoxiao |4 aut | |
700 | 1 | |a Wang, Zefeng |4 aut | |
700 | 1 | |a Zhou, Shaohong |4 aut | |
700 | 1 | |a Yang, Xiaohai |4 aut | |
700 | 1 | |a Wang, Kemin |4 aut | |
700 | 1 | |a Liu, Jianbo |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Asheville, NC : Science in China Press, 1995 |g 66(2023), 3 vom: 03. Feb., Seite 845-852 |w (DE-627)327310405 |w (DE-600)2043454-6 |x 1862-2771 |7 nnns |
773 | 1 | 8 | |g volume:66 |g year:2023 |g number:3 |g day:03 |g month:02 |g pages:845-852 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11426-022-1491-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 66 |j 2023 |e 3 |b 03 |c 02 |h 845-852 |
author_variant |
y z yz s w sw y y yy x h xh z w zw s z sz x y xy k w kw j l jl |
---|---|
matchkey_str |
article:18622771:2023----::hssprtdinyeoprmnaiainsriiilnrcluammrn |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11426-022-1491-0 doi (DE-627)SPR051466198 (SPR)s11426-022-1491-0-e DE-627 ger DE-627 rakwb eng Zhang, Yanwen verfasserin aut Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2023 Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy. artificial membraneless organelles (dpeaa)DE-He213 coacervate microdroplets (dpeaa)DE-He213 nitric oxide (dpeaa)DE-He213 liquid-liquid phase separation (dpeaa)DE-He213 cell repair (dpeaa)DE-He213 Wang, Shixin aut Yan, Yuling aut He, Xiaoxiao aut Wang, Zefeng aut Zhou, Shaohong aut Yang, Xiaohai aut Wang, Kemin aut Liu, Jianbo aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 66(2023), 3 vom: 03. Feb., Seite 845-852 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:66 year:2023 number:3 day:03 month:02 pages:845-852 https://dx.doi.org/10.1007/s11426-022-1491-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 66 2023 3 03 02 845-852 |
spelling |
10.1007/s11426-022-1491-0 doi (DE-627)SPR051466198 (SPR)s11426-022-1491-0-e DE-627 ger DE-627 rakwb eng Zhang, Yanwen verfasserin aut Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2023 Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy. artificial membraneless organelles (dpeaa)DE-He213 coacervate microdroplets (dpeaa)DE-He213 nitric oxide (dpeaa)DE-He213 liquid-liquid phase separation (dpeaa)DE-He213 cell repair (dpeaa)DE-He213 Wang, Shixin aut Yan, Yuling aut He, Xiaoxiao aut Wang, Zefeng aut Zhou, Shaohong aut Yang, Xiaohai aut Wang, Kemin aut Liu, Jianbo aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 66(2023), 3 vom: 03. Feb., Seite 845-852 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:66 year:2023 number:3 day:03 month:02 pages:845-852 https://dx.doi.org/10.1007/s11426-022-1491-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 66 2023 3 03 02 845-852 |
allfields_unstemmed |
10.1007/s11426-022-1491-0 doi (DE-627)SPR051466198 (SPR)s11426-022-1491-0-e DE-627 ger DE-627 rakwb eng Zhang, Yanwen verfasserin aut Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2023 Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy. artificial membraneless organelles (dpeaa)DE-He213 coacervate microdroplets (dpeaa)DE-He213 nitric oxide (dpeaa)DE-He213 liquid-liquid phase separation (dpeaa)DE-He213 cell repair (dpeaa)DE-He213 Wang, Shixin aut Yan, Yuling aut He, Xiaoxiao aut Wang, Zefeng aut Zhou, Shaohong aut Yang, Xiaohai aut Wang, Kemin aut Liu, Jianbo aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 66(2023), 3 vom: 03. Feb., Seite 845-852 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:66 year:2023 number:3 day:03 month:02 pages:845-852 https://dx.doi.org/10.1007/s11426-022-1491-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 66 2023 3 03 02 845-852 |
allfieldsGer |
10.1007/s11426-022-1491-0 doi (DE-627)SPR051466198 (SPR)s11426-022-1491-0-e DE-627 ger DE-627 rakwb eng Zhang, Yanwen verfasserin aut Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2023 Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy. artificial membraneless organelles (dpeaa)DE-He213 coacervate microdroplets (dpeaa)DE-He213 nitric oxide (dpeaa)DE-He213 liquid-liquid phase separation (dpeaa)DE-He213 cell repair (dpeaa)DE-He213 Wang, Shixin aut Yan, Yuling aut He, Xiaoxiao aut Wang, Zefeng aut Zhou, Shaohong aut Yang, Xiaohai aut Wang, Kemin aut Liu, Jianbo aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 66(2023), 3 vom: 03. Feb., Seite 845-852 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:66 year:2023 number:3 day:03 month:02 pages:845-852 https://dx.doi.org/10.1007/s11426-022-1491-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 66 2023 3 03 02 845-852 |
allfieldsSound |
10.1007/s11426-022-1491-0 doi (DE-627)SPR051466198 (SPR)s11426-022-1491-0-e DE-627 ger DE-627 rakwb eng Zhang, Yanwen verfasserin aut Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Science China Press 2023 Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy. artificial membraneless organelles (dpeaa)DE-He213 coacervate microdroplets (dpeaa)DE-He213 nitric oxide (dpeaa)DE-He213 liquid-liquid phase separation (dpeaa)DE-He213 cell repair (dpeaa)DE-He213 Wang, Shixin aut Yan, Yuling aut He, Xiaoxiao aut Wang, Zefeng aut Zhou, Shaohong aut Yang, Xiaohai aut Wang, Kemin aut Liu, Jianbo aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 66(2023), 3 vom: 03. Feb., Seite 845-852 (DE-627)327310405 (DE-600)2043454-6 1862-2771 nnns volume:66 year:2023 number:3 day:03 month:02 pages:845-852 https://dx.doi.org/10.1007/s11426-022-1491-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 66 2023 3 03 02 845-852 |
language |
English |
source |
Enthalten in Science in China 66(2023), 3 vom: 03. Feb., Seite 845-852 volume:66 year:2023 number:3 day:03 month:02 pages:845-852 |
sourceStr |
Enthalten in Science in China 66(2023), 3 vom: 03. Feb., Seite 845-852 volume:66 year:2023 number:3 day:03 month:02 pages:845-852 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
artificial membraneless organelles coacervate microdroplets nitric oxide liquid-liquid phase separation cell repair |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Zhang, Yanwen @@aut@@ Wang, Shixin @@aut@@ Yan, Yuling @@aut@@ He, Xiaoxiao @@aut@@ Wang, Zefeng @@aut@@ Zhou, Shaohong @@aut@@ Yang, Xiaohai @@aut@@ Wang, Kemin @@aut@@ Liu, Jianbo @@aut@@ |
publishDateDaySort_date |
2023-02-03T00:00:00Z |
hierarchy_top_id |
327310405 |
id |
SPR051466198 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051466198</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510063509.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11426-022-1491-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051466198</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11426-022-1491-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Yanwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial membraneless organelles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coacervate microdroplets</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitric oxide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid-liquid phase separation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cell repair</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shixin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Yuling</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Xiaoxiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zefeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Shaohong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xiaohai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kemin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jianbo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">66(2023), 3 vom: 03. Feb., Seite 845-852</subfield><subfield code="w">(DE-627)327310405</subfield><subfield code="w">(DE-600)2043454-6</subfield><subfield code="x">1862-2771</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">day:03</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:845-852</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11426-022-1491-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="b">03</subfield><subfield code="c">02</subfield><subfield code="h">845-852</subfield></datafield></record></collection>
|
author |
Zhang, Yanwen |
spellingShingle |
Zhang, Yanwen misc artificial membraneless organelles misc coacervate microdroplets misc nitric oxide misc liquid-liquid phase separation misc cell repair Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair |
authorStr |
Zhang, Yanwen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)327310405 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2771 |
topic_title |
Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair artificial membraneless organelles (dpeaa)DE-He213 coacervate microdroplets (dpeaa)DE-He213 nitric oxide (dpeaa)DE-He213 liquid-liquid phase separation (dpeaa)DE-He213 cell repair (dpeaa)DE-He213 |
topic |
misc artificial membraneless organelles misc coacervate microdroplets misc nitric oxide misc liquid-liquid phase separation misc cell repair |
topic_unstemmed |
misc artificial membraneless organelles misc coacervate microdroplets misc nitric oxide misc liquid-liquid phase separation misc cell repair |
topic_browse |
misc artificial membraneless organelles misc coacervate microdroplets misc nitric oxide misc liquid-liquid phase separation misc cell repair |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
327310405 |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)327310405 (DE-600)2043454-6 |
title |
Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair |
ctrlnum |
(DE-627)SPR051466198 (SPR)s11426-022-1491-0-e |
title_full |
Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair |
author_sort |
Zhang, Yanwen |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
845 |
author_browse |
Zhang, Yanwen Wang, Shixin Yan, Yuling He, Xiaoxiao Wang, Zefeng Zhou, Shaohong Yang, Xiaohai Wang, Kemin Liu, Jianbo |
container_volume |
66 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Yanwen |
doi_str_mv |
10.1007/s11426-022-1491-0 |
title_sort |
phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair |
title_auth |
Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair |
abstract |
Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy. © Science China Press 2023 |
abstractGer |
Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy. © Science China Press 2023 |
abstract_unstemmed |
Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy. © Science China Press 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
3 |
title_short |
Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair |
url |
https://dx.doi.org/10.1007/s11426-022-1491-0 |
remote_bool |
true |
author2 |
Wang, Shixin Yan, Yuling He, Xiaoxiao Wang, Zefeng Zhou, Shaohong Yang, Xiaohai Wang, Kemin Liu, Jianbo |
author2Str |
Wang, Shixin Yan, Yuling He, Xiaoxiao Wang, Zefeng Zhou, Shaohong Yang, Xiaohai Wang, Kemin Liu, Jianbo |
ppnlink |
327310405 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11426-022-1491-0 |
up_date |
2024-07-03T21:59:20.641Z |
_version_ |
1803596816076242944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR051466198</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510063509.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11426-022-1491-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051466198</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11426-022-1491-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Yanwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Science China Press 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Implanting artificial organelles in living cells is capable of correcting cellular dysfunctionalities for cell repair and biomedical applications. In this work, phase-separated bienzyme-loaded coacervate microdroplets are established as a model of artificial membraneless organelles in endothelial dysfunctional cells for the cascade enzymatic production of nitric oxide (NO) with a purpose of correcting cellular NO deficiency. We prepared the coacervate microdroplets via liquid-liquid phase separation of oppositely charged polyelectrolytes, in which glucose oxidase/horseradish peroxidase-mediated cascade reaction was compartmented. After the coacervate microdroplets were implanted in NO-deficient dysfunctional cells, the compartments maintained a phase-separated liquid droplet structure, which facilitated a significant enhancement of NO production in the dysfunctional cells. The recovery of NO production was further exploited to inhibit clot formation in blood plasma located in the cell suspension. This demonstrated a proof-of-concept design of artificial organelles in dysfunctional cells for cell repair and anticoagulation-related medical applications Our results demonstrate an approach for the construction of coacervate droplets through phase separation for the generation of artificial membraneless organelles, which can be designed to provide an array of functionalities in living organisms that have the potential to be used in the field of cell engineering and medical therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">artificial membraneless organelles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coacervate microdroplets</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nitric oxide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">liquid-liquid phase separation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">cell repair</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shixin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Yuling</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Xiaoxiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zefeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Shaohong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xiaohai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kemin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jianbo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">66(2023), 3 vom: 03. Feb., Seite 845-852</subfield><subfield code="w">(DE-627)327310405</subfield><subfield code="w">(DE-600)2043454-6</subfield><subfield code="x">1862-2771</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:66</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:3</subfield><subfield code="g">day:03</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:845-852</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11426-022-1491-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">66</subfield><subfield code="j">2023</subfield><subfield code="e">3</subfield><subfield code="b">03</subfield><subfield code="c">02</subfield><subfield code="h">845-852</subfield></datafield></record></collection>
|
score |
7.399295 |