A relaxation-based probabilistic approach for PDE-constrained optimization under uncertainty with pointwise state constraints

Abstract We consider a class of convex risk-neutral PDE-constrained optimization problems subject to pointwise control and state constraints. Due to the many challenges associated with almost sure constraints on pointwise evaluations of the state, we suggest a relaxation via a smooth functional boun...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Kouri, Drew P. [verfasserIn]

Staudigl, Mathias

Surowiec, Thomas M.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Optimization under uncertainty

PDE-constrained optimization

State constraints

Probability constraints

Expectation constraints

First-order methods

Stochastic approximation

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Computational optimization and applications - New York, NY [u.a.] : Springer Science + Business Media B.V., 1992, 85(2023), 2 vom: 27. Feb., Seite 441-478

Übergeordnetes Werk:

volume:85 ; year:2023 ; number:2 ; day:27 ; month:02 ; pages:441-478

Links:

Volltext

DOI / URN:

10.1007/s10589-023-00461-8

Katalog-ID:

SPR051553597

Nicht das Richtige dabei?

Schreiben Sie uns!