UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots
Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing...
Ausführliche Beschreibung
Autor*in: |
Pasupuleti, Kedhareswara Sairam [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
two-dimensional graphitic carbon nitride (2D g-C |
---|
Anmerkung: |
© Tsinghua University Press 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Nano research - [S.l.] : Tsinghua Press, 2008, 16(2023), 5 vom: 26. März, Seite 7682-7695 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2023 ; number:5 ; day:26 ; month:03 ; pages:7682-7695 |
Links: |
---|
DOI / URN: |
10.1007/s12274-023-5472-x |
---|
Katalog-ID: |
SPR051589397 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR051589397 | ||
003 | DE-627 | ||
005 | 20230523064726.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230523s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12274-023-5472-x |2 doi | |
035 | |a (DE-627)SPR051589397 | ||
035 | |a (SPR)s12274-023-5472-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Pasupuleti, Kedhareswara Sairam |e verfasserin |4 aut | |
245 | 1 | 0 | |a UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Tsinghua University Press 2023 | ||
520 | |a Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of $ NH_{3} $ gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT $ NH_{3} $ gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (Sg-$ C_{3} %$ N_{4} $ QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor to $ NH_{3} $ (500 ppb) at RT is dramatically enhanced by ∼ 4.5-fold with a low detection limit (∼ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented $ NH_{3} $ detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to $ NH_{3} $ are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-$ C_{3} %$ N_{4} $ QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-$ C_{3} %$ N_{4} $ based high responsive RT SAW gas sensors. | ||
650 | 4 | |a two-dimensional graphitic carbon nitride (2D g-C |7 (dpeaa)DE-He213 | |
650 | 4 | |a N |7 (dpeaa)DE-He213 | |
650 | 4 | |a ) |7 (dpeaa)DE-He213 | |
650 | 4 | |a sulfur doping |7 (dpeaa)DE-He213 | |
650 | 4 | |a quantum dots |7 (dpeaa)DE-He213 | |
650 | 4 | |a surface acoustic wave (SAW) sensor |7 (dpeaa)DE-He213 | |
650 | 4 | |a NH |7 (dpeaa)DE-He213 | |
650 | 4 | |a gas |7 (dpeaa)DE-He213 | |
650 | 4 | |a electroacoustic effect |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chougule, Sourabh S. |4 aut | |
700 | 1 | |a Vidyasagar, Devthade |4 aut | |
700 | 1 | |a Bak, Na-hyun |4 aut | |
700 | 1 | |a Jung, Namgee |4 aut | |
700 | 1 | |a Kim, Young-Heon |4 aut | |
700 | 1 | |a Lee, Jong-Hee |4 aut | |
700 | 1 | |a Kim, Song-Gang |4 aut | |
700 | 1 | |a Kim, Moon-Deock |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nano research |d [S.l.] : Tsinghua Press, 2008 |g 16(2023), 5 vom: 26. März, Seite 7682-7695 |w (DE-627)57375361X |w (DE-600)2442216-2 |x 1998-0000 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2023 |g number:5 |g day:26 |g month:03 |g pages:7682-7695 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12274-023-5472-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2023 |e 5 |b 26 |c 03 |h 7682-7695 |
author_variant |
k s p ks ksp s s c ss ssc d v dv n h b nhb n j nj y h k yhk j h l jhl s g k sgk m d k mdk |
---|---|
matchkey_str |
article:19980000:2023----::vihdiehgpromneomeprtrsraecutcaeh3asnouig |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s12274-023-5472-x doi (DE-627)SPR051589397 (SPR)s12274-023-5472-x-e DE-627 ger DE-627 rakwb eng Pasupuleti, Kedhareswara Sairam verfasserin aut UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tsinghua University Press 2023 Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of $ NH_{3} $ gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT $ NH_{3} $ gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (Sg-$ C_{3} %$ N_{4} $ QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor to $ NH_{3} $ (500 ppb) at RT is dramatically enhanced by ∼ 4.5-fold with a low detection limit (∼ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented $ NH_{3} $ detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to $ NH_{3} $ are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-$ C_{3} %$ N_{4} $ QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-$ C_{3} %$ N_{4} $ based high responsive RT SAW gas sensors. two-dimensional graphitic carbon nitride (2D g-C (dpeaa)DE-He213 N (dpeaa)DE-He213 ) (dpeaa)DE-He213 sulfur doping (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 surface acoustic wave (SAW) sensor (dpeaa)DE-He213 NH (dpeaa)DE-He213 gas (dpeaa)DE-He213 electroacoustic effect (dpeaa)DE-He213 Chougule, Sourabh S. aut Vidyasagar, Devthade aut Bak, Na-hyun aut Jung, Namgee aut Kim, Young-Heon aut Lee, Jong-Hee aut Kim, Song-Gang aut Kim, Moon-Deock aut Enthalten in Nano research [S.l.] : Tsinghua Press, 2008 16(2023), 5 vom: 26. März, Seite 7682-7695 (DE-627)57375361X (DE-600)2442216-2 1998-0000 nnns volume:16 year:2023 number:5 day:26 month:03 pages:7682-7695 https://dx.doi.org/10.1007/s12274-023-5472-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 16 2023 5 26 03 7682-7695 |
spelling |
10.1007/s12274-023-5472-x doi (DE-627)SPR051589397 (SPR)s12274-023-5472-x-e DE-627 ger DE-627 rakwb eng Pasupuleti, Kedhareswara Sairam verfasserin aut UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tsinghua University Press 2023 Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of $ NH_{3} $ gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT $ NH_{3} $ gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (Sg-$ C_{3} %$ N_{4} $ QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor to $ NH_{3} $ (500 ppb) at RT is dramatically enhanced by ∼ 4.5-fold with a low detection limit (∼ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented $ NH_{3} $ detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to $ NH_{3} $ are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-$ C_{3} %$ N_{4} $ QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-$ C_{3} %$ N_{4} $ based high responsive RT SAW gas sensors. two-dimensional graphitic carbon nitride (2D g-C (dpeaa)DE-He213 N (dpeaa)DE-He213 ) (dpeaa)DE-He213 sulfur doping (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 surface acoustic wave (SAW) sensor (dpeaa)DE-He213 NH (dpeaa)DE-He213 gas (dpeaa)DE-He213 electroacoustic effect (dpeaa)DE-He213 Chougule, Sourabh S. aut Vidyasagar, Devthade aut Bak, Na-hyun aut Jung, Namgee aut Kim, Young-Heon aut Lee, Jong-Hee aut Kim, Song-Gang aut Kim, Moon-Deock aut Enthalten in Nano research [S.l.] : Tsinghua Press, 2008 16(2023), 5 vom: 26. März, Seite 7682-7695 (DE-627)57375361X (DE-600)2442216-2 1998-0000 nnns volume:16 year:2023 number:5 day:26 month:03 pages:7682-7695 https://dx.doi.org/10.1007/s12274-023-5472-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 16 2023 5 26 03 7682-7695 |
allfields_unstemmed |
10.1007/s12274-023-5472-x doi (DE-627)SPR051589397 (SPR)s12274-023-5472-x-e DE-627 ger DE-627 rakwb eng Pasupuleti, Kedhareswara Sairam verfasserin aut UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tsinghua University Press 2023 Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of $ NH_{3} $ gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT $ NH_{3} $ gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (Sg-$ C_{3} %$ N_{4} $ QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor to $ NH_{3} $ (500 ppb) at RT is dramatically enhanced by ∼ 4.5-fold with a low detection limit (∼ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented $ NH_{3} $ detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to $ NH_{3} $ are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-$ C_{3} %$ N_{4} $ QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-$ C_{3} %$ N_{4} $ based high responsive RT SAW gas sensors. two-dimensional graphitic carbon nitride (2D g-C (dpeaa)DE-He213 N (dpeaa)DE-He213 ) (dpeaa)DE-He213 sulfur doping (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 surface acoustic wave (SAW) sensor (dpeaa)DE-He213 NH (dpeaa)DE-He213 gas (dpeaa)DE-He213 electroacoustic effect (dpeaa)DE-He213 Chougule, Sourabh S. aut Vidyasagar, Devthade aut Bak, Na-hyun aut Jung, Namgee aut Kim, Young-Heon aut Lee, Jong-Hee aut Kim, Song-Gang aut Kim, Moon-Deock aut Enthalten in Nano research [S.l.] : Tsinghua Press, 2008 16(2023), 5 vom: 26. März, Seite 7682-7695 (DE-627)57375361X (DE-600)2442216-2 1998-0000 nnns volume:16 year:2023 number:5 day:26 month:03 pages:7682-7695 https://dx.doi.org/10.1007/s12274-023-5472-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 16 2023 5 26 03 7682-7695 |
allfieldsGer |
10.1007/s12274-023-5472-x doi (DE-627)SPR051589397 (SPR)s12274-023-5472-x-e DE-627 ger DE-627 rakwb eng Pasupuleti, Kedhareswara Sairam verfasserin aut UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tsinghua University Press 2023 Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of $ NH_{3} $ gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT $ NH_{3} $ gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (Sg-$ C_{3} %$ N_{4} $ QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor to $ NH_{3} $ (500 ppb) at RT is dramatically enhanced by ∼ 4.5-fold with a low detection limit (∼ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented $ NH_{3} $ detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to $ NH_{3} $ are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-$ C_{3} %$ N_{4} $ QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-$ C_{3} %$ N_{4} $ based high responsive RT SAW gas sensors. two-dimensional graphitic carbon nitride (2D g-C (dpeaa)DE-He213 N (dpeaa)DE-He213 ) (dpeaa)DE-He213 sulfur doping (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 surface acoustic wave (SAW) sensor (dpeaa)DE-He213 NH (dpeaa)DE-He213 gas (dpeaa)DE-He213 electroacoustic effect (dpeaa)DE-He213 Chougule, Sourabh S. aut Vidyasagar, Devthade aut Bak, Na-hyun aut Jung, Namgee aut Kim, Young-Heon aut Lee, Jong-Hee aut Kim, Song-Gang aut Kim, Moon-Deock aut Enthalten in Nano research [S.l.] : Tsinghua Press, 2008 16(2023), 5 vom: 26. März, Seite 7682-7695 (DE-627)57375361X (DE-600)2442216-2 1998-0000 nnns volume:16 year:2023 number:5 day:26 month:03 pages:7682-7695 https://dx.doi.org/10.1007/s12274-023-5472-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 16 2023 5 26 03 7682-7695 |
allfieldsSound |
10.1007/s12274-023-5472-x doi (DE-627)SPR051589397 (SPR)s12274-023-5472-x-e DE-627 ger DE-627 rakwb eng Pasupuleti, Kedhareswara Sairam verfasserin aut UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Tsinghua University Press 2023 Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of $ NH_{3} $ gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT $ NH_{3} $ gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (Sg-$ C_{3} %$ N_{4} $ QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor to $ NH_{3} $ (500 ppb) at RT is dramatically enhanced by ∼ 4.5-fold with a low detection limit (∼ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented $ NH_{3} $ detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to $ NH_{3} $ are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-$ C_{3} %$ N_{4} $ QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-$ C_{3} %$ N_{4} $ based high responsive RT SAW gas sensors. two-dimensional graphitic carbon nitride (2D g-C (dpeaa)DE-He213 N (dpeaa)DE-He213 ) (dpeaa)DE-He213 sulfur doping (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 surface acoustic wave (SAW) sensor (dpeaa)DE-He213 NH (dpeaa)DE-He213 gas (dpeaa)DE-He213 electroacoustic effect (dpeaa)DE-He213 Chougule, Sourabh S. aut Vidyasagar, Devthade aut Bak, Na-hyun aut Jung, Namgee aut Kim, Young-Heon aut Lee, Jong-Hee aut Kim, Song-Gang aut Kim, Moon-Deock aut Enthalten in Nano research [S.l.] : Tsinghua Press, 2008 16(2023), 5 vom: 26. März, Seite 7682-7695 (DE-627)57375361X (DE-600)2442216-2 1998-0000 nnns volume:16 year:2023 number:5 day:26 month:03 pages:7682-7695 https://dx.doi.org/10.1007/s12274-023-5472-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 16 2023 5 26 03 7682-7695 |
language |
English |
source |
Enthalten in Nano research 16(2023), 5 vom: 26. März, Seite 7682-7695 volume:16 year:2023 number:5 day:26 month:03 pages:7682-7695 |
sourceStr |
Enthalten in Nano research 16(2023), 5 vom: 26. März, Seite 7682-7695 volume:16 year:2023 number:5 day:26 month:03 pages:7682-7695 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
two-dimensional graphitic carbon nitride (2D g-C N ) sulfur doping quantum dots surface acoustic wave (SAW) sensor NH gas electroacoustic effect |
isfreeaccess_bool |
false |
container_title |
Nano research |
authorswithroles_txt_mv |
Pasupuleti, Kedhareswara Sairam @@aut@@ Chougule, Sourabh S. @@aut@@ Vidyasagar, Devthade @@aut@@ Bak, Na-hyun @@aut@@ Jung, Namgee @@aut@@ Kim, Young-Heon @@aut@@ Lee, Jong-Hee @@aut@@ Kim, Song-Gang @@aut@@ Kim, Moon-Deock @@aut@@ |
publishDateDaySort_date |
2023-03-26T00:00:00Z |
hierarchy_top_id |
57375361X |
id |
SPR051589397 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051589397</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230523064726.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230523s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12274-023-5472-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051589397</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12274-023-5472-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pasupuleti, Kedhareswara Sairam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Tsinghua University Press 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of $ NH_{3} $ gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT $ NH_{3} $ gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (Sg-$ C_{3} %$ N_{4} $ QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor to $ NH_{3} $ (500 ppb) at RT is dramatically enhanced by ∼ 4.5-fold with a low detection limit (∼ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented $ NH_{3} $ detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to $ NH_{3} $ are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-$ C_{3} %$ N_{4} $ QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-$ C_{3} %$ N_{4} $ based high responsive RT SAW gas sensors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-dimensional graphitic carbon nitride (2D g-C</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">N</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sulfur doping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum dots</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface acoustic wave (SAW) sensor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NH</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gas</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electroacoustic effect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chougule, Sourabh S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vidyasagar, Devthade</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bak, Na-hyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jung, Namgee</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Young-Heon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Jong-Hee</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Song-Gang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Moon-Deock</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nano research</subfield><subfield code="d">[S.l.] : Tsinghua Press, 2008</subfield><subfield code="g">16(2023), 5 vom: 26. März, Seite 7682-7695</subfield><subfield code="w">(DE-627)57375361X</subfield><subfield code="w">(DE-600)2442216-2</subfield><subfield code="x">1998-0000</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5</subfield><subfield code="g">day:26</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:7682-7695</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12274-023-5472-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">5</subfield><subfield code="b">26</subfield><subfield code="c">03</subfield><subfield code="h">7682-7695</subfield></datafield></record></collection>
|
author |
Pasupuleti, Kedhareswara Sairam |
spellingShingle |
Pasupuleti, Kedhareswara Sairam misc two-dimensional graphitic carbon nitride (2D g-C misc N misc ) misc sulfur doping misc quantum dots misc surface acoustic wave (SAW) sensor misc NH misc gas misc electroacoustic effect UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots |
authorStr |
Pasupuleti, Kedhareswara Sairam |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)57375361X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1998-0000 |
topic_title |
UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots two-dimensional graphitic carbon nitride (2D g-C (dpeaa)DE-He213 N (dpeaa)DE-He213 ) (dpeaa)DE-He213 sulfur doping (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 surface acoustic wave (SAW) sensor (dpeaa)DE-He213 NH (dpeaa)DE-He213 gas (dpeaa)DE-He213 electroacoustic effect (dpeaa)DE-He213 |
topic |
misc two-dimensional graphitic carbon nitride (2D g-C misc N misc ) misc sulfur doping misc quantum dots misc surface acoustic wave (SAW) sensor misc NH misc gas misc electroacoustic effect |
topic_unstemmed |
misc two-dimensional graphitic carbon nitride (2D g-C misc N misc ) misc sulfur doping misc quantum dots misc surface acoustic wave (SAW) sensor misc NH misc gas misc electroacoustic effect |
topic_browse |
misc two-dimensional graphitic carbon nitride (2D g-C misc N misc ) misc sulfur doping misc quantum dots misc surface acoustic wave (SAW) sensor misc NH misc gas misc electroacoustic effect |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nano research |
hierarchy_parent_id |
57375361X |
hierarchy_top_title |
Nano research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)57375361X (DE-600)2442216-2 |
title |
UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots |
ctrlnum |
(DE-627)SPR051589397 (SPR)s12274-023-5472-x-e |
title_full |
UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots |
author_sort |
Pasupuleti, Kedhareswara Sairam |
journal |
Nano research |
journalStr |
Nano research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
7682 |
author_browse |
Pasupuleti, Kedhareswara Sairam Chougule, Sourabh S. Vidyasagar, Devthade Bak, Na-hyun Jung, Namgee Kim, Young-Heon Lee, Jong-Hee Kim, Song-Gang Kim, Moon-Deock |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Pasupuleti, Kedhareswara Sairam |
doi_str_mv |
10.1007/s12274-023-5472-x |
title_sort |
uv light driven high-performance room temperature surface acoustic wave $ nh_{3} $ gas sensor using sulfur-doped g-$ c_{3} %$ n_{4} $ quantum dots |
title_auth |
UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots |
abstract |
Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of $ NH_{3} $ gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT $ NH_{3} $ gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (Sg-$ C_{3} %$ N_{4} $ QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor to $ NH_{3} $ (500 ppb) at RT is dramatically enhanced by ∼ 4.5-fold with a low detection limit (∼ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented $ NH_{3} $ detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to $ NH_{3} $ are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-$ C_{3} %$ N_{4} $ QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-$ C_{3} %$ N_{4} $ based high responsive RT SAW gas sensors. © Tsinghua University Press 2023 |
abstractGer |
Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of $ NH_{3} $ gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT $ NH_{3} $ gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (Sg-$ C_{3} %$ N_{4} $ QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor to $ NH_{3} $ (500 ppb) at RT is dramatically enhanced by ∼ 4.5-fold with a low detection limit (∼ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented $ NH_{3} $ detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to $ NH_{3} $ are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-$ C_{3} %$ N_{4} $ QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-$ C_{3} %$ N_{4} $ based high responsive RT SAW gas sensors. © Tsinghua University Press 2023 |
abstract_unstemmed |
Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of $ NH_{3} $ gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT $ NH_{3} $ gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (Sg-$ C_{3} %$ N_{4} $ QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor to $ NH_{3} $ (500 ppb) at RT is dramatically enhanced by ∼ 4.5-fold with a low detection limit (∼ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented $ NH_{3} $ detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to $ NH_{3} $ are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-$ C_{3} %$ N_{4} $ QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-$ C_{3} %$ N_{4} $ based high responsive RT SAW gas sensors. © Tsinghua University Press 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
5 |
title_short |
UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots |
url |
https://dx.doi.org/10.1007/s12274-023-5472-x |
remote_bool |
true |
author2 |
Chougule, Sourabh S. Vidyasagar, Devthade Bak, Na-hyun Jung, Namgee Kim, Young-Heon Lee, Jong-Hee Kim, Song-Gang Kim, Moon-Deock |
author2Str |
Chougule, Sourabh S. Vidyasagar, Devthade Bak, Na-hyun Jung, Namgee Kim, Young-Heon Lee, Jong-Hee Kim, Song-Gang Kim, Moon-Deock |
ppnlink |
57375361X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12274-023-5472-x |
up_date |
2024-07-03T22:42:00.999Z |
_version_ |
1803599500804096000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051589397</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230523064726.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230523s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12274-023-5472-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051589397</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12274-023-5472-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pasupuleti, Kedhareswara Sairam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">UV light driven high-performance room temperature surface acoustic wave $ NH_{3} $ gas sensor using sulfur-doped g-$ C_{3} %$ N_{4} $ quantum dots</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Tsinghua University Press 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Nanomaterials integrated surface acoustic wave (SAW) gas sensing technology has emerged as a promising candidate for realtime toxic gas sensing applications for environmental and human health safety. However, the development of novel chemical interface based on two-dimensional (2D) sensing materials for SAW sensors for the rapid and sensitive detection of $ NH_{3} $ gas at room temperature (RT) still remains challenging. Herein, we report a highly selective RT $ NH_{3} $ gas sensor based on sulfur-doped graphitic carbon nitride quantum dots (Sg-$ C_{3} %$ N_{4} $ QD) coated langasite (LGS) SAW sensor with enhanced sensitivity and recovery rate under ultraviolet (UV) illumination. Fascinatingly, the sensitivity of the S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor to $ NH_{3} $ (500 ppb) at RT is dramatically enhanced by ∼ 4.5-fold with a low detection limit (∼ 85 ppb), high selectivity, excellent reproducibility, and fast response/recovery time (70 s/79 s) under UV activation (365 nm) as compared to dark condition. Additionally, the proposed sensor exhibited augmented $ NH_{3} $ detection capability across the broad range of relative humidity (20%–80%). Such remarkable gas sensing performances of the as-prepared sensor to $ NH_{3} $ are attributed to the high surface area, enhanced functional groups, sulfur defects, UV photogenerated charge carriers, and facile charge transfer in the S@g-$ C_{3} %$ N_{4} $ QD sensing layer, which further helps to improve the gas molecules adsorption that causes the increase in conductivity, resulting in larger frequency responses. The gas sensing mechanism of S@g-$ C_{3} %$ N_{4} $ QD/LGS SAW sensor is ascribed to the enhanced electroacoustic effect, which is supported by the correlation of resistive type and COMSOL Multiphysics simulation studies. We envisage that the present work paves a promising strategy to develop the next generation 2D g-$ C_{3} %$ N_{4} $ based high responsive RT SAW gas sensors.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">two-dimensional graphitic carbon nitride (2D g-C</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">N</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sulfur doping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum dots</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface acoustic wave (SAW) sensor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NH</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gas</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">electroacoustic effect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chougule, Sourabh S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vidyasagar, Devthade</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bak, Na-hyun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jung, Namgee</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Young-Heon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Jong-Hee</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Song-Gang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Moon-Deock</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nano research</subfield><subfield code="d">[S.l.] : Tsinghua Press, 2008</subfield><subfield code="g">16(2023), 5 vom: 26. März, Seite 7682-7695</subfield><subfield code="w">(DE-627)57375361X</subfield><subfield code="w">(DE-600)2442216-2</subfield><subfield code="x">1998-0000</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:5</subfield><subfield code="g">day:26</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:7682-7695</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12274-023-5472-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">5</subfield><subfield code="b">26</subfield><subfield code="c">03</subfield><subfield code="h">7682-7695</subfield></datafield></record></collection>
|
score |
7.3993406 |