Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans
Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestin...
Ausführliche Beschreibung
Autor*in: |
Kanj, Amjad N. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Respiratory research - London : BioMed Central, 2001, 24(2023), 1 vom: 31. Mai |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2023 ; number:1 ; day:31 ; month:05 |
Links: |
---|
DOI / URN: |
10.1186/s12931-023-02422-5 |
---|
Katalog-ID: |
SPR051736438 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR051736438 | ||
003 | DE-627 | ||
005 | 20230601064809.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230601s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12931-023-02422-5 |2 doi | |
035 | |a (DE-627)SPR051736438 | ||
035 | |a (SPR)s12931-023-02422-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kanj, Amjad N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms. | ||
650 | 4 | |a Asthma |7 (dpeaa)DE-He213 | |
650 | 4 | |a Candida |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mycobiota |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gut |7 (dpeaa)DE-He213 | |
650 | 4 | |a ILC2 |7 (dpeaa)DE-He213 | |
700 | 1 | |a Kottom, Theodore J. |4 aut | |
700 | 1 | |a Schaefbauer, Kyle J. |4 aut | |
700 | 1 | |a Choudhury, Malay |4 aut | |
700 | 1 | |a Limper, Andrew H. |4 aut | |
700 | 1 | |a Skalski, Joseph H. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Respiratory research |d London : BioMed Central, 2001 |g 24(2023), 1 vom: 31. Mai |w (DE-627)326646485 |w (DE-600)2041675-1 |x 1465-993X |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2023 |g number:1 |g day:31 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12931-023-02422-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2023 |e 1 |b 31 |c 05 |
author_variant |
a n k an ank t j k tj tjk k j s kj kjs m c mc a h l ah ahl j h s jh jhs |
---|---|
matchkey_str |
article:1465993X:2023----::yboiotenetnluglirboanraelnrsdngopintlmhiclsniascaewt |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s12931-023-02422-5 doi (DE-627)SPR051736438 (SPR)s12931-023-02422-5-e DE-627 ger DE-627 rakwb eng Kanj, Amjad N. verfasserin aut Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms. Asthma (dpeaa)DE-He213 Candida (dpeaa)DE-He213 Mycobiota (dpeaa)DE-He213 Gut (dpeaa)DE-He213 ILC2 (dpeaa)DE-He213 Kottom, Theodore J. aut Schaefbauer, Kyle J. aut Choudhury, Malay aut Limper, Andrew H. aut Skalski, Joseph H. aut Enthalten in Respiratory research London : BioMed Central, 2001 24(2023), 1 vom: 31. Mai (DE-627)326646485 (DE-600)2041675-1 1465-993X nnns volume:24 year:2023 number:1 day:31 month:05 https://dx.doi.org/10.1186/s12931-023-02422-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 31 05 |
spelling |
10.1186/s12931-023-02422-5 doi (DE-627)SPR051736438 (SPR)s12931-023-02422-5-e DE-627 ger DE-627 rakwb eng Kanj, Amjad N. verfasserin aut Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms. Asthma (dpeaa)DE-He213 Candida (dpeaa)DE-He213 Mycobiota (dpeaa)DE-He213 Gut (dpeaa)DE-He213 ILC2 (dpeaa)DE-He213 Kottom, Theodore J. aut Schaefbauer, Kyle J. aut Choudhury, Malay aut Limper, Andrew H. aut Skalski, Joseph H. aut Enthalten in Respiratory research London : BioMed Central, 2001 24(2023), 1 vom: 31. Mai (DE-627)326646485 (DE-600)2041675-1 1465-993X nnns volume:24 year:2023 number:1 day:31 month:05 https://dx.doi.org/10.1186/s12931-023-02422-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 31 05 |
allfields_unstemmed |
10.1186/s12931-023-02422-5 doi (DE-627)SPR051736438 (SPR)s12931-023-02422-5-e DE-627 ger DE-627 rakwb eng Kanj, Amjad N. verfasserin aut Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms. Asthma (dpeaa)DE-He213 Candida (dpeaa)DE-He213 Mycobiota (dpeaa)DE-He213 Gut (dpeaa)DE-He213 ILC2 (dpeaa)DE-He213 Kottom, Theodore J. aut Schaefbauer, Kyle J. aut Choudhury, Malay aut Limper, Andrew H. aut Skalski, Joseph H. aut Enthalten in Respiratory research London : BioMed Central, 2001 24(2023), 1 vom: 31. Mai (DE-627)326646485 (DE-600)2041675-1 1465-993X nnns volume:24 year:2023 number:1 day:31 month:05 https://dx.doi.org/10.1186/s12931-023-02422-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 31 05 |
allfieldsGer |
10.1186/s12931-023-02422-5 doi (DE-627)SPR051736438 (SPR)s12931-023-02422-5-e DE-627 ger DE-627 rakwb eng Kanj, Amjad N. verfasserin aut Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms. Asthma (dpeaa)DE-He213 Candida (dpeaa)DE-He213 Mycobiota (dpeaa)DE-He213 Gut (dpeaa)DE-He213 ILC2 (dpeaa)DE-He213 Kottom, Theodore J. aut Schaefbauer, Kyle J. aut Choudhury, Malay aut Limper, Andrew H. aut Skalski, Joseph H. aut Enthalten in Respiratory research London : BioMed Central, 2001 24(2023), 1 vom: 31. Mai (DE-627)326646485 (DE-600)2041675-1 1465-993X nnns volume:24 year:2023 number:1 day:31 month:05 https://dx.doi.org/10.1186/s12931-023-02422-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 31 05 |
allfieldsSound |
10.1186/s12931-023-02422-5 doi (DE-627)SPR051736438 (SPR)s12931-023-02422-5-e DE-627 ger DE-627 rakwb eng Kanj, Amjad N. verfasserin aut Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms. Asthma (dpeaa)DE-He213 Candida (dpeaa)DE-He213 Mycobiota (dpeaa)DE-He213 Gut (dpeaa)DE-He213 ILC2 (dpeaa)DE-He213 Kottom, Theodore J. aut Schaefbauer, Kyle J. aut Choudhury, Malay aut Limper, Andrew H. aut Skalski, Joseph H. aut Enthalten in Respiratory research London : BioMed Central, 2001 24(2023), 1 vom: 31. Mai (DE-627)326646485 (DE-600)2041675-1 1465-993X nnns volume:24 year:2023 number:1 day:31 month:05 https://dx.doi.org/10.1186/s12931-023-02422-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 31 05 |
language |
English |
source |
Enthalten in Respiratory research 24(2023), 1 vom: 31. Mai volume:24 year:2023 number:1 day:31 month:05 |
sourceStr |
Enthalten in Respiratory research 24(2023), 1 vom: 31. Mai volume:24 year:2023 number:1 day:31 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Asthma Candida Mycobiota Gut ILC2 |
isfreeaccess_bool |
true |
container_title |
Respiratory research |
authorswithroles_txt_mv |
Kanj, Amjad N. @@aut@@ Kottom, Theodore J. @@aut@@ Schaefbauer, Kyle J. @@aut@@ Choudhury, Malay @@aut@@ Limper, Andrew H. @@aut@@ Skalski, Joseph H. @@aut@@ |
publishDateDaySort_date |
2023-05-31T00:00:00Z |
hierarchy_top_id |
326646485 |
id |
SPR051736438 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051736438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230601064809.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230601s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12931-023-02422-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051736438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12931-023-02422-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kanj, Amjad N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asthma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Candida</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mycobiota</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gut</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ILC2</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kottom, Theodore J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schaefbauer, Kyle J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choudhury, Malay</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Limper, Andrew H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skalski, Joseph H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Respiratory research</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">24(2023), 1 vom: 31. Mai</subfield><subfield code="w">(DE-627)326646485</subfield><subfield code="w">(DE-600)2041675-1</subfield><subfield code="x">1465-993X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12931-023-02422-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Kanj, Amjad N. |
spellingShingle |
Kanj, Amjad N. misc Asthma misc Candida misc Mycobiota misc Gut misc ILC2 Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans |
authorStr |
Kanj, Amjad N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326646485 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1465-993X |
topic_title |
Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans Asthma (dpeaa)DE-He213 Candida (dpeaa)DE-He213 Mycobiota (dpeaa)DE-He213 Gut (dpeaa)DE-He213 ILC2 (dpeaa)DE-He213 |
topic |
misc Asthma misc Candida misc Mycobiota misc Gut misc ILC2 |
topic_unstemmed |
misc Asthma misc Candida misc Mycobiota misc Gut misc ILC2 |
topic_browse |
misc Asthma misc Candida misc Mycobiota misc Gut misc ILC2 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Respiratory research |
hierarchy_parent_id |
326646485 |
hierarchy_top_title |
Respiratory research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326646485 (DE-600)2041675-1 |
title |
Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans |
ctrlnum |
(DE-627)SPR051736438 (SPR)s12931-023-02422-5-e |
title_full |
Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans |
author_sort |
Kanj, Amjad N. |
journal |
Respiratory research |
journalStr |
Respiratory research |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Kanj, Amjad N. Kottom, Theodore J. Schaefbauer, Kyle J. Choudhury, Malay Limper, Andrew H. Skalski, Joseph H. |
container_volume |
24 |
format_se |
Elektronische Aufsätze |
author-letter |
Kanj, Amjad N. |
doi_str_mv |
10.1186/s12931-023-02422-5 |
title_sort |
dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans |
title_auth |
Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans |
abstract |
Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms. © The Author(s) 2023 |
abstractGer |
Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms. © The Author(s) 2023 |
abstract_unstemmed |
Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans |
url |
https://dx.doi.org/10.1186/s12931-023-02422-5 |
remote_bool |
true |
author2 |
Kottom, Theodore J. Schaefbauer, Kyle J. Choudhury, Malay Limper, Andrew H. Skalski, Joseph H. |
author2Str |
Kottom, Theodore J. Schaefbauer, Kyle J. Choudhury, Malay Limper, Andrew H. Skalski, Joseph H. |
ppnlink |
326646485 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12931-023-02422-5 |
up_date |
2024-07-03T23:31:00.414Z |
_version_ |
1803602583007264768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051736438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230601064809.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230601s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12931-023-02422-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051736438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12931-023-02422-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kanj, Amjad N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dysbiosis of the intestinal fungal microbiota increases lung resident group 2 innate lymphoid cells and is associated with enhanced asthma severity in mice and humans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The gut-lung axis is the concept that alterations of gut microbiota communities can influence immune function in the lungs. While studies have explored the relationship between intestinal bacterial dysbiosis and asthma development, less is understood about the impact of commensal intestinal fungi on asthma severity and control and underlying mechanisms by which this occurs. Methods Wild-type mice were treated with Cefoperazone to deplete gut bacteria and administered Candida albicans or water through gavage. Mice were then sensitized to house dust mite (HDM) and their lungs were analyzed for changes in immune response. Humans with asthma were recruited and stool samples were analyzed for Candida abundance and associations with asthma severity and control. Results Mice with intestinal Candida dysbiosis had enhanced Th2 response after airway sensitization with HDM, manifesting with greater total white cell and eosinophil counts in the airway, and total IgE concentrations in the serum. Group 2 innate lymphoid cells (ILC2) were more abundant in the lungs of mice with Candida gut dysbiosis, even when not sensitized to HDM, suggesting that ILC2 may be important mediators of the enhanced Th2 response. These effects occurred with no detectable increased Candida in the lung by culture or rtPCR suggesting gut-lung axis interactions were responsible. In humans with asthma, enhanced intestinal Candida burden was associated with the risk of severe asthma exacerbation in the past year, independent of systemic antibiotic and glucocorticoid use. Conclusions Candida gut dysbiosis may worsen asthma control and enhance allergic airway inflammation, potentially mediated by ILC2. Further studies are necessary to examine whether microbial dysbiosis can drive difficult-to-control asthma in humans and to better understand the underlying mechanisms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asthma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Candida</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mycobiota</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gut</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ILC2</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kottom, Theodore J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schaefbauer, Kyle J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Choudhury, Malay</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Limper, Andrew H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skalski, Joseph H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Respiratory research</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">24(2023), 1 vom: 31. Mai</subfield><subfield code="w">(DE-627)326646485</subfield><subfield code="w">(DE-600)2041675-1</subfield><subfield code="x">1465-993X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12931-023-02422-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.402895 |