Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass
Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the samp...
Ausführliche Beschreibung
Autor*in: |
Xiao, Kun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Rock mechanics and rock engineering - Wien [u.a.] : Springer, 1969, 56(2023), 6 vom: 28. Feb., Seite 3927-3948 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2023 ; number:6 ; day:28 ; month:02 ; pages:3927-3948 |
Links: |
---|
DOI / URN: |
10.1007/s00603-023-03263-w |
---|
Katalog-ID: |
SPR051785838 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR051785838 | ||
003 | DE-627 | ||
005 | 20230604064651.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230604s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00603-023-03263-w |2 doi | |
035 | |a (DE-627)SPR051785838 | ||
035 | |a (SPR)s00603-023-03263-w-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Xiao, Kun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the sampling trace length distribution is established, which proves that the trace length distribution is independent of the fracture occurrence distribution. Using the Volterra integral equation method, the stereological formula of the trace length is inversely solved to obtain the distribution expressions of the major axis and axial ratio of the elliptical fractures. The analytical solutions of the probability density function (PDF) of the characteristic size of the elliptical fractures are derived for cases in which the trace length follows a uniform distribution, fractal distribution, and polynomial distribution. Second, for cases in which the trace length conforms to a negative exponential distribution, gamma distribution, chi-square distribution, and lognormal distribution, the statistical eigenvalues of the major axis and axial ratio of the elliptical fractures are deduced. Finally, a Monte Carlo statistical simulation is performed using the Rock Mass Joint Network Simulation ($ RJNS^{3D} $) toolkit to verify the applicability of the derivation process and the correctness of fitting a polynomial function to the trace length distribution to solve the PDF of the characteristic size of the elliptical fractures. The proposed method can better predict the distribution of the required parameters, such as the major axis and axial ratio of the elliptical fractures, according to the typical two-dimensional data in the sampling windows. This method can be further applied to reconstruct fracture networks in practical engineering tasks and lay a foundation for the analysis of rock mass strength and deformation, representative elementary volume (REV), seepage, and surrounding rock stability. | ||
520 | |a Highlights A non-similar elliptical model is developed to simulate a fracture network in rock mass.The multifactor coupling stereological relationship of the sampling trace length distribution is established.The correct analytical solutions of the probability density function of the characteristic size of elliptical fractures are derived.Trace sampling in the sampling window is simulated by the Monte Carlo method. | ||
650 | 4 | |a Elliptical fractures |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fracture size distribution |7 (dpeaa)DE-He213 | |
650 | 4 | |a Trace sampling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fractured rock mass |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stereological method |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhang, Ru |4 aut | |
700 | 1 | |a Xie, Jing |4 aut | |
700 | 1 | |a Ren, Li |4 aut | |
700 | 1 | |a Gao, Mingzhong |4 aut | |
700 | 1 | |a Zhang, Zetian |4 aut | |
700 | 1 | |a Lou, Chendi |4 aut | |
700 | 1 | |a Ai, Ting |4 aut | |
700 | 1 | |a Zha, Ersheng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Rock mechanics and rock engineering |d Wien [u.a.] : Springer, 1969 |g 56(2023), 6 vom: 28. Feb., Seite 3927-3948 |w (DE-627)270128352 |w (DE-600)1476578-0 |x 1434-453X |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2023 |g number:6 |g day:28 |g month:02 |g pages:3927-3948 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00603-023-03263-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 56 |j 2023 |e 6 |b 28 |c 02 |h 3927-3948 |
author_variant |
k x kx r z rz j x jx l r lr m g mg z z zz c l cl t a ta e z ez |
---|---|
matchkey_str |
article:1434453X:2023----::nltclouinfrhcaatrsiszdsrbtootelitc |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s00603-023-03263-w doi (DE-627)SPR051785838 (SPR)s00603-023-03263-w-e DE-627 ger DE-627 rakwb eng Xiao, Kun verfasserin aut Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the sampling trace length distribution is established, which proves that the trace length distribution is independent of the fracture occurrence distribution. Using the Volterra integral equation method, the stereological formula of the trace length is inversely solved to obtain the distribution expressions of the major axis and axial ratio of the elliptical fractures. The analytical solutions of the probability density function (PDF) of the characteristic size of the elliptical fractures are derived for cases in which the trace length follows a uniform distribution, fractal distribution, and polynomial distribution. Second, for cases in which the trace length conforms to a negative exponential distribution, gamma distribution, chi-square distribution, and lognormal distribution, the statistical eigenvalues of the major axis and axial ratio of the elliptical fractures are deduced. Finally, a Monte Carlo statistical simulation is performed using the Rock Mass Joint Network Simulation ($ RJNS^{3D} $) toolkit to verify the applicability of the derivation process and the correctness of fitting a polynomial function to the trace length distribution to solve the PDF of the characteristic size of the elliptical fractures. The proposed method can better predict the distribution of the required parameters, such as the major axis and axial ratio of the elliptical fractures, according to the typical two-dimensional data in the sampling windows. This method can be further applied to reconstruct fracture networks in practical engineering tasks and lay a foundation for the analysis of rock mass strength and deformation, representative elementary volume (REV), seepage, and surrounding rock stability. Highlights A non-similar elliptical model is developed to simulate a fracture network in rock mass.The multifactor coupling stereological relationship of the sampling trace length distribution is established.The correct analytical solutions of the probability density function of the characteristic size of elliptical fractures are derived.Trace sampling in the sampling window is simulated by the Monte Carlo method. Elliptical fractures (dpeaa)DE-He213 Fracture size distribution (dpeaa)DE-He213 Trace sampling (dpeaa)DE-He213 Fractured rock mass (dpeaa)DE-He213 Stereological method (dpeaa)DE-He213 Zhang, Ru aut Xie, Jing aut Ren, Li aut Gao, Mingzhong aut Zhang, Zetian aut Lou, Chendi aut Ai, Ting aut Zha, Ersheng aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 56(2023), 6 vom: 28. Feb., Seite 3927-3948 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:56 year:2023 number:6 day:28 month:02 pages:3927-3948 https://dx.doi.org/10.1007/s00603-023-03263-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 56 2023 6 28 02 3927-3948 |
spelling |
10.1007/s00603-023-03263-w doi (DE-627)SPR051785838 (SPR)s00603-023-03263-w-e DE-627 ger DE-627 rakwb eng Xiao, Kun verfasserin aut Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the sampling trace length distribution is established, which proves that the trace length distribution is independent of the fracture occurrence distribution. Using the Volterra integral equation method, the stereological formula of the trace length is inversely solved to obtain the distribution expressions of the major axis and axial ratio of the elliptical fractures. The analytical solutions of the probability density function (PDF) of the characteristic size of the elliptical fractures are derived for cases in which the trace length follows a uniform distribution, fractal distribution, and polynomial distribution. Second, for cases in which the trace length conforms to a negative exponential distribution, gamma distribution, chi-square distribution, and lognormal distribution, the statistical eigenvalues of the major axis and axial ratio of the elliptical fractures are deduced. Finally, a Monte Carlo statistical simulation is performed using the Rock Mass Joint Network Simulation ($ RJNS^{3D} $) toolkit to verify the applicability of the derivation process and the correctness of fitting a polynomial function to the trace length distribution to solve the PDF of the characteristic size of the elliptical fractures. The proposed method can better predict the distribution of the required parameters, such as the major axis and axial ratio of the elliptical fractures, according to the typical two-dimensional data in the sampling windows. This method can be further applied to reconstruct fracture networks in practical engineering tasks and lay a foundation for the analysis of rock mass strength and deformation, representative elementary volume (REV), seepage, and surrounding rock stability. Highlights A non-similar elliptical model is developed to simulate a fracture network in rock mass.The multifactor coupling stereological relationship of the sampling trace length distribution is established.The correct analytical solutions of the probability density function of the characteristic size of elliptical fractures are derived.Trace sampling in the sampling window is simulated by the Monte Carlo method. Elliptical fractures (dpeaa)DE-He213 Fracture size distribution (dpeaa)DE-He213 Trace sampling (dpeaa)DE-He213 Fractured rock mass (dpeaa)DE-He213 Stereological method (dpeaa)DE-He213 Zhang, Ru aut Xie, Jing aut Ren, Li aut Gao, Mingzhong aut Zhang, Zetian aut Lou, Chendi aut Ai, Ting aut Zha, Ersheng aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 56(2023), 6 vom: 28. Feb., Seite 3927-3948 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:56 year:2023 number:6 day:28 month:02 pages:3927-3948 https://dx.doi.org/10.1007/s00603-023-03263-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 56 2023 6 28 02 3927-3948 |
allfields_unstemmed |
10.1007/s00603-023-03263-w doi (DE-627)SPR051785838 (SPR)s00603-023-03263-w-e DE-627 ger DE-627 rakwb eng Xiao, Kun verfasserin aut Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the sampling trace length distribution is established, which proves that the trace length distribution is independent of the fracture occurrence distribution. Using the Volterra integral equation method, the stereological formula of the trace length is inversely solved to obtain the distribution expressions of the major axis and axial ratio of the elliptical fractures. The analytical solutions of the probability density function (PDF) of the characteristic size of the elliptical fractures are derived for cases in which the trace length follows a uniform distribution, fractal distribution, and polynomial distribution. Second, for cases in which the trace length conforms to a negative exponential distribution, gamma distribution, chi-square distribution, and lognormal distribution, the statistical eigenvalues of the major axis and axial ratio of the elliptical fractures are deduced. Finally, a Monte Carlo statistical simulation is performed using the Rock Mass Joint Network Simulation ($ RJNS^{3D} $) toolkit to verify the applicability of the derivation process and the correctness of fitting a polynomial function to the trace length distribution to solve the PDF of the characteristic size of the elliptical fractures. The proposed method can better predict the distribution of the required parameters, such as the major axis and axial ratio of the elliptical fractures, according to the typical two-dimensional data in the sampling windows. This method can be further applied to reconstruct fracture networks in practical engineering tasks and lay a foundation for the analysis of rock mass strength and deformation, representative elementary volume (REV), seepage, and surrounding rock stability. Highlights A non-similar elliptical model is developed to simulate a fracture network in rock mass.The multifactor coupling stereological relationship of the sampling trace length distribution is established.The correct analytical solutions of the probability density function of the characteristic size of elliptical fractures are derived.Trace sampling in the sampling window is simulated by the Monte Carlo method. Elliptical fractures (dpeaa)DE-He213 Fracture size distribution (dpeaa)DE-He213 Trace sampling (dpeaa)DE-He213 Fractured rock mass (dpeaa)DE-He213 Stereological method (dpeaa)DE-He213 Zhang, Ru aut Xie, Jing aut Ren, Li aut Gao, Mingzhong aut Zhang, Zetian aut Lou, Chendi aut Ai, Ting aut Zha, Ersheng aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 56(2023), 6 vom: 28. Feb., Seite 3927-3948 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:56 year:2023 number:6 day:28 month:02 pages:3927-3948 https://dx.doi.org/10.1007/s00603-023-03263-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 56 2023 6 28 02 3927-3948 |
allfieldsGer |
10.1007/s00603-023-03263-w doi (DE-627)SPR051785838 (SPR)s00603-023-03263-w-e DE-627 ger DE-627 rakwb eng Xiao, Kun verfasserin aut Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the sampling trace length distribution is established, which proves that the trace length distribution is independent of the fracture occurrence distribution. Using the Volterra integral equation method, the stereological formula of the trace length is inversely solved to obtain the distribution expressions of the major axis and axial ratio of the elliptical fractures. The analytical solutions of the probability density function (PDF) of the characteristic size of the elliptical fractures are derived for cases in which the trace length follows a uniform distribution, fractal distribution, and polynomial distribution. Second, for cases in which the trace length conforms to a negative exponential distribution, gamma distribution, chi-square distribution, and lognormal distribution, the statistical eigenvalues of the major axis and axial ratio of the elliptical fractures are deduced. Finally, a Monte Carlo statistical simulation is performed using the Rock Mass Joint Network Simulation ($ RJNS^{3D} $) toolkit to verify the applicability of the derivation process and the correctness of fitting a polynomial function to the trace length distribution to solve the PDF of the characteristic size of the elliptical fractures. The proposed method can better predict the distribution of the required parameters, such as the major axis and axial ratio of the elliptical fractures, according to the typical two-dimensional data in the sampling windows. This method can be further applied to reconstruct fracture networks in practical engineering tasks and lay a foundation for the analysis of rock mass strength and deformation, representative elementary volume (REV), seepage, and surrounding rock stability. Highlights A non-similar elliptical model is developed to simulate a fracture network in rock mass.The multifactor coupling stereological relationship of the sampling trace length distribution is established.The correct analytical solutions of the probability density function of the characteristic size of elliptical fractures are derived.Trace sampling in the sampling window is simulated by the Monte Carlo method. Elliptical fractures (dpeaa)DE-He213 Fracture size distribution (dpeaa)DE-He213 Trace sampling (dpeaa)DE-He213 Fractured rock mass (dpeaa)DE-He213 Stereological method (dpeaa)DE-He213 Zhang, Ru aut Xie, Jing aut Ren, Li aut Gao, Mingzhong aut Zhang, Zetian aut Lou, Chendi aut Ai, Ting aut Zha, Ersheng aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 56(2023), 6 vom: 28. Feb., Seite 3927-3948 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:56 year:2023 number:6 day:28 month:02 pages:3927-3948 https://dx.doi.org/10.1007/s00603-023-03263-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 56 2023 6 28 02 3927-3948 |
allfieldsSound |
10.1007/s00603-023-03263-w doi (DE-627)SPR051785838 (SPR)s00603-023-03263-w-e DE-627 ger DE-627 rakwb eng Xiao, Kun verfasserin aut Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the sampling trace length distribution is established, which proves that the trace length distribution is independent of the fracture occurrence distribution. Using the Volterra integral equation method, the stereological formula of the trace length is inversely solved to obtain the distribution expressions of the major axis and axial ratio of the elliptical fractures. The analytical solutions of the probability density function (PDF) of the characteristic size of the elliptical fractures are derived for cases in which the trace length follows a uniform distribution, fractal distribution, and polynomial distribution. Second, for cases in which the trace length conforms to a negative exponential distribution, gamma distribution, chi-square distribution, and lognormal distribution, the statistical eigenvalues of the major axis and axial ratio of the elliptical fractures are deduced. Finally, a Monte Carlo statistical simulation is performed using the Rock Mass Joint Network Simulation ($ RJNS^{3D} $) toolkit to verify the applicability of the derivation process and the correctness of fitting a polynomial function to the trace length distribution to solve the PDF of the characteristic size of the elliptical fractures. The proposed method can better predict the distribution of the required parameters, such as the major axis and axial ratio of the elliptical fractures, according to the typical two-dimensional data in the sampling windows. This method can be further applied to reconstruct fracture networks in practical engineering tasks and lay a foundation for the analysis of rock mass strength and deformation, representative elementary volume (REV), seepage, and surrounding rock stability. Highlights A non-similar elliptical model is developed to simulate a fracture network in rock mass.The multifactor coupling stereological relationship of the sampling trace length distribution is established.The correct analytical solutions of the probability density function of the characteristic size of elliptical fractures are derived.Trace sampling in the sampling window is simulated by the Monte Carlo method. Elliptical fractures (dpeaa)DE-He213 Fracture size distribution (dpeaa)DE-He213 Trace sampling (dpeaa)DE-He213 Fractured rock mass (dpeaa)DE-He213 Stereological method (dpeaa)DE-He213 Zhang, Ru aut Xie, Jing aut Ren, Li aut Gao, Mingzhong aut Zhang, Zetian aut Lou, Chendi aut Ai, Ting aut Zha, Ersheng aut Enthalten in Rock mechanics and rock engineering Wien [u.a.] : Springer, 1969 56(2023), 6 vom: 28. Feb., Seite 3927-3948 (DE-627)270128352 (DE-600)1476578-0 1434-453X nnns volume:56 year:2023 number:6 day:28 month:02 pages:3927-3948 https://dx.doi.org/10.1007/s00603-023-03263-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 56 2023 6 28 02 3927-3948 |
language |
English |
source |
Enthalten in Rock mechanics and rock engineering 56(2023), 6 vom: 28. Feb., Seite 3927-3948 volume:56 year:2023 number:6 day:28 month:02 pages:3927-3948 |
sourceStr |
Enthalten in Rock mechanics and rock engineering 56(2023), 6 vom: 28. Feb., Seite 3927-3948 volume:56 year:2023 number:6 day:28 month:02 pages:3927-3948 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Elliptical fractures Fracture size distribution Trace sampling Fractured rock mass Stereological method |
isfreeaccess_bool |
false |
container_title |
Rock mechanics and rock engineering |
authorswithroles_txt_mv |
Xiao, Kun @@aut@@ Zhang, Ru @@aut@@ Xie, Jing @@aut@@ Ren, Li @@aut@@ Gao, Mingzhong @@aut@@ Zhang, Zetian @@aut@@ Lou, Chendi @@aut@@ Ai, Ting @@aut@@ Zha, Ersheng @@aut@@ |
publishDateDaySort_date |
2023-02-28T00:00:00Z |
hierarchy_top_id |
270128352 |
id |
SPR051785838 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051785838</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230604064651.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230604s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00603-023-03263-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051785838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00603-023-03263-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiao, Kun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the sampling trace length distribution is established, which proves that the trace length distribution is independent of the fracture occurrence distribution. Using the Volterra integral equation method, the stereological formula of the trace length is inversely solved to obtain the distribution expressions of the major axis and axial ratio of the elliptical fractures. The analytical solutions of the probability density function (PDF) of the characteristic size of the elliptical fractures are derived for cases in which the trace length follows a uniform distribution, fractal distribution, and polynomial distribution. Second, for cases in which the trace length conforms to a negative exponential distribution, gamma distribution, chi-square distribution, and lognormal distribution, the statistical eigenvalues of the major axis and axial ratio of the elliptical fractures are deduced. Finally, a Monte Carlo statistical simulation is performed using the Rock Mass Joint Network Simulation ($ RJNS^{3D} $) toolkit to verify the applicability of the derivation process and the correctness of fitting a polynomial function to the trace length distribution to solve the PDF of the characteristic size of the elliptical fractures. The proposed method can better predict the distribution of the required parameters, such as the major axis and axial ratio of the elliptical fractures, according to the typical two-dimensional data in the sampling windows. This method can be further applied to reconstruct fracture networks in practical engineering tasks and lay a foundation for the analysis of rock mass strength and deformation, representative elementary volume (REV), seepage, and surrounding rock stability.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights A non-similar elliptical model is developed to simulate a fracture network in rock mass.The multifactor coupling stereological relationship of the sampling trace length distribution is established.The correct analytical solutions of the probability density function of the characteristic size of elliptical fractures are derived.Trace sampling in the sampling window is simulated by the Monte Carlo method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptical fractures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracture size distribution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trace sampling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractured rock mass</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stereological method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ru</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Mingzhong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zetian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Chendi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ai, Ting</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zha, Ersheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Rock mechanics and rock engineering</subfield><subfield code="d">Wien [u.a.] : Springer, 1969</subfield><subfield code="g">56(2023), 6 vom: 28. Feb., Seite 3927-3948</subfield><subfield code="w">(DE-627)270128352</subfield><subfield code="w">(DE-600)1476578-0</subfield><subfield code="x">1434-453X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6</subfield><subfield code="g">day:28</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:3927-3948</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00603-023-03263-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2023</subfield><subfield code="e">6</subfield><subfield code="b">28</subfield><subfield code="c">02</subfield><subfield code="h">3927-3948</subfield></datafield></record></collection>
|
author |
Xiao, Kun |
spellingShingle |
Xiao, Kun misc Elliptical fractures misc Fracture size distribution misc Trace sampling misc Fractured rock mass misc Stereological method Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass |
authorStr |
Xiao, Kun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)270128352 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1434-453X |
topic_title |
Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass Elliptical fractures (dpeaa)DE-He213 Fracture size distribution (dpeaa)DE-He213 Trace sampling (dpeaa)DE-He213 Fractured rock mass (dpeaa)DE-He213 Stereological method (dpeaa)DE-He213 |
topic |
misc Elliptical fractures misc Fracture size distribution misc Trace sampling misc Fractured rock mass misc Stereological method |
topic_unstemmed |
misc Elliptical fractures misc Fracture size distribution misc Trace sampling misc Fractured rock mass misc Stereological method |
topic_browse |
misc Elliptical fractures misc Fracture size distribution misc Trace sampling misc Fractured rock mass misc Stereological method |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Rock mechanics and rock engineering |
hierarchy_parent_id |
270128352 |
hierarchy_top_title |
Rock mechanics and rock engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)270128352 (DE-600)1476578-0 |
title |
Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass |
ctrlnum |
(DE-627)SPR051785838 (SPR)s00603-023-03263-w-e |
title_full |
Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass |
author_sort |
Xiao, Kun |
journal |
Rock mechanics and rock engineering |
journalStr |
Rock mechanics and rock engineering |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
3927 |
author_browse |
Xiao, Kun Zhang, Ru Xie, Jing Ren, Li Gao, Mingzhong Zhang, Zetian Lou, Chendi Ai, Ting Zha, Ersheng |
container_volume |
56 |
format_se |
Elektronische Aufsätze |
author-letter |
Xiao, Kun |
doi_str_mv |
10.1007/s00603-023-03263-w |
title_sort |
analytical solutions for the characteristic size distribution of the elliptical model in fractured rock mass |
title_auth |
Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass |
abstract |
Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the sampling trace length distribution is established, which proves that the trace length distribution is independent of the fracture occurrence distribution. Using the Volterra integral equation method, the stereological formula of the trace length is inversely solved to obtain the distribution expressions of the major axis and axial ratio of the elliptical fractures. The analytical solutions of the probability density function (PDF) of the characteristic size of the elliptical fractures are derived for cases in which the trace length follows a uniform distribution, fractal distribution, and polynomial distribution. Second, for cases in which the trace length conforms to a negative exponential distribution, gamma distribution, chi-square distribution, and lognormal distribution, the statistical eigenvalues of the major axis and axial ratio of the elliptical fractures are deduced. Finally, a Monte Carlo statistical simulation is performed using the Rock Mass Joint Network Simulation ($ RJNS^{3D} $) toolkit to verify the applicability of the derivation process and the correctness of fitting a polynomial function to the trace length distribution to solve the PDF of the characteristic size of the elliptical fractures. The proposed method can better predict the distribution of the required parameters, such as the major axis and axial ratio of the elliptical fractures, according to the typical two-dimensional data in the sampling windows. This method can be further applied to reconstruct fracture networks in practical engineering tasks and lay a foundation for the analysis of rock mass strength and deformation, representative elementary volume (REV), seepage, and surrounding rock stability. Highlights A non-similar elliptical model is developed to simulate a fracture network in rock mass.The multifactor coupling stereological relationship of the sampling trace length distribution is established.The correct analytical solutions of the probability density function of the characteristic size of elliptical fractures are derived.Trace sampling in the sampling window is simulated by the Monte Carlo method. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the sampling trace length distribution is established, which proves that the trace length distribution is independent of the fracture occurrence distribution. Using the Volterra integral equation method, the stereological formula of the trace length is inversely solved to obtain the distribution expressions of the major axis and axial ratio of the elliptical fractures. The analytical solutions of the probability density function (PDF) of the characteristic size of the elliptical fractures are derived for cases in which the trace length follows a uniform distribution, fractal distribution, and polynomial distribution. Second, for cases in which the trace length conforms to a negative exponential distribution, gamma distribution, chi-square distribution, and lognormal distribution, the statistical eigenvalues of the major axis and axial ratio of the elliptical fractures are deduced. Finally, a Monte Carlo statistical simulation is performed using the Rock Mass Joint Network Simulation ($ RJNS^{3D} $) toolkit to verify the applicability of the derivation process and the correctness of fitting a polynomial function to the trace length distribution to solve the PDF of the characteristic size of the elliptical fractures. The proposed method can better predict the distribution of the required parameters, such as the major axis and axial ratio of the elliptical fractures, according to the typical two-dimensional data in the sampling windows. This method can be further applied to reconstruct fracture networks in practical engineering tasks and lay a foundation for the analysis of rock mass strength and deformation, representative elementary volume (REV), seepage, and surrounding rock stability. Highlights A non-similar elliptical model is developed to simulate a fracture network in rock mass.The multifactor coupling stereological relationship of the sampling trace length distribution is established.The correct analytical solutions of the probability density function of the characteristic size of elliptical fractures are derived.Trace sampling in the sampling window is simulated by the Monte Carlo method. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the sampling trace length distribution is established, which proves that the trace length distribution is independent of the fracture occurrence distribution. Using the Volterra integral equation method, the stereological formula of the trace length is inversely solved to obtain the distribution expressions of the major axis and axial ratio of the elliptical fractures. The analytical solutions of the probability density function (PDF) of the characteristic size of the elliptical fractures are derived for cases in which the trace length follows a uniform distribution, fractal distribution, and polynomial distribution. Second, for cases in which the trace length conforms to a negative exponential distribution, gamma distribution, chi-square distribution, and lognormal distribution, the statistical eigenvalues of the major axis and axial ratio of the elliptical fractures are deduced. Finally, a Monte Carlo statistical simulation is performed using the Rock Mass Joint Network Simulation ($ RJNS^{3D} $) toolkit to verify the applicability of the derivation process and the correctness of fitting a polynomial function to the trace length distribution to solve the PDF of the characteristic size of the elliptical fractures. The proposed method can better predict the distribution of the required parameters, such as the major axis and axial ratio of the elliptical fractures, according to the typical two-dimensional data in the sampling windows. This method can be further applied to reconstruct fracture networks in practical engineering tasks and lay a foundation for the analysis of rock mass strength and deformation, representative elementary volume (REV), seepage, and surrounding rock stability. Highlights A non-similar elliptical model is developed to simulate a fracture network in rock mass.The multifactor coupling stereological relationship of the sampling trace length distribution is established.The correct analytical solutions of the probability density function of the characteristic size of elliptical fractures are derived.Trace sampling in the sampling window is simulated by the Monte Carlo method. © The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
6 |
title_short |
Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass |
url |
https://dx.doi.org/10.1007/s00603-023-03263-w |
remote_bool |
true |
author2 |
Zhang, Ru Xie, Jing Ren, Li Gao, Mingzhong Zhang, Zetian Lou, Chendi Ai, Ting Zha, Ersheng |
author2Str |
Zhang, Ru Xie, Jing Ren, Li Gao, Mingzhong Zhang, Zetian Lou, Chendi Ai, Ting Zha, Ersheng |
ppnlink |
270128352 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00603-023-03263-w |
up_date |
2024-07-03T23:45:50.763Z |
_version_ |
1803603516610052096 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051785838</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230604064651.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230604s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00603-023-03263-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051785838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00603-023-03263-w-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiao, Kun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytical Solutions for the Characteristic Size Distribution of the Elliptical Model in Fractured Rock Mass</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Fracture characteristics have a significant effect on the mechanical and hydraulic properties of rock mass. In this paper, before modeling a discrete fracture network, the fracture is simplified as a non-similar ellipse. First, the multifactor coupling stereological relationship of the sampling trace length distribution is established, which proves that the trace length distribution is independent of the fracture occurrence distribution. Using the Volterra integral equation method, the stereological formula of the trace length is inversely solved to obtain the distribution expressions of the major axis and axial ratio of the elliptical fractures. The analytical solutions of the probability density function (PDF) of the characteristic size of the elliptical fractures are derived for cases in which the trace length follows a uniform distribution, fractal distribution, and polynomial distribution. Second, for cases in which the trace length conforms to a negative exponential distribution, gamma distribution, chi-square distribution, and lognormal distribution, the statistical eigenvalues of the major axis and axial ratio of the elliptical fractures are deduced. Finally, a Monte Carlo statistical simulation is performed using the Rock Mass Joint Network Simulation ($ RJNS^{3D} $) toolkit to verify the applicability of the derivation process and the correctness of fitting a polynomial function to the trace length distribution to solve the PDF of the characteristic size of the elliptical fractures. The proposed method can better predict the distribution of the required parameters, such as the major axis and axial ratio of the elliptical fractures, according to the typical two-dimensional data in the sampling windows. This method can be further applied to reconstruct fracture networks in practical engineering tasks and lay a foundation for the analysis of rock mass strength and deformation, representative elementary volume (REV), seepage, and surrounding rock stability.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights A non-similar elliptical model is developed to simulate a fracture network in rock mass.The multifactor coupling stereological relationship of the sampling trace length distribution is established.The correct analytical solutions of the probability density function of the characteristic size of elliptical fractures are derived.Trace sampling in the sampling window is simulated by the Monte Carlo method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptical fractures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracture size distribution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trace sampling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fractured rock mass</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stereological method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Ru</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xie, Jing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Li</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Mingzhong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zetian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lou, Chendi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ai, Ting</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zha, Ersheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Rock mechanics and rock engineering</subfield><subfield code="d">Wien [u.a.] : Springer, 1969</subfield><subfield code="g">56(2023), 6 vom: 28. Feb., Seite 3927-3948</subfield><subfield code="w">(DE-627)270128352</subfield><subfield code="w">(DE-600)1476578-0</subfield><subfield code="x">1434-453X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:6</subfield><subfield code="g">day:28</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:3927-3948</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00603-023-03263-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2023</subfield><subfield code="e">6</subfield><subfield code="b">28</subfield><subfield code="c">02</subfield><subfield code="h">3927-3948</subfield></datafield></record></collection>
|
score |
7.4023542 |