Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review
Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search follow...
Ausführliche Beschreibung
Autor*in: |
Lu, Guangyu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Malaria journal - London : BioMed Central, 2002, 22(2023), 1 vom: 06. Juni |
---|---|
Übergeordnetes Werk: |
volume:22 ; year:2023 ; number:1 ; day:06 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s12936-023-04604-4 |
---|
Katalog-ID: |
SPR051817829 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR051817829 | ||
003 | DE-627 | ||
005 | 20230607064711.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230607s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12936-023-04604-4 |2 doi | |
035 | |a (DE-627)SPR051817829 | ||
035 | |a (SPR)s12936-023-04604-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Lu, Guangyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle–Ottawa Scale (aNOS). Results A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. Conclusions Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models. | ||
650 | 4 | |a Malaria elimination |7 (dpeaa)DE-He213 | |
650 | 4 | |a Re-introduction risk |7 (dpeaa)DE-He213 | |
650 | 4 | |a Surveillance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prediction models |7 (dpeaa)DE-He213 | |
650 | 4 | |a Systematic review |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhang, Dongying |4 aut | |
700 | 1 | |a Chen, Juan |4 aut | |
700 | 1 | |a Cao, Yuanyuan |4 aut | |
700 | 1 | |a Chai, Liying |4 aut | |
700 | 1 | |a Liu, Kaixuan |4 aut | |
700 | 1 | |a Chong, Zeying |4 aut | |
700 | 1 | |a Zhang, Yuying |4 aut | |
700 | 1 | |a Lu, Yan |4 aut | |
700 | 1 | |a Heuschen, Anna-Katharina |4 aut | |
700 | 1 | |a Müller, Olaf |4 aut | |
700 | 1 | |a Zhu, Guoding |4 aut | |
700 | 1 | |a Cao, Jun |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Malaria journal |d London : BioMed Central, 2002 |g 22(2023), 1 vom: 06. Juni |w (DE-627)355986582 |w (DE-600)2091229-8 |x 1475-2875 |7 nnns |
773 | 1 | 8 | |g volume:22 |g year:2023 |g number:1 |g day:06 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12936-023-04604-4 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 22 |j 2023 |e 1 |b 06 |c 06 |
author_variant |
g l gl d z dz j c jc y c yc l c lc k l kl z c zc y z yz y l yl a k h akh o m om g z gz j c jc |
---|---|
matchkey_str |
article:14752875:2023----::rdcighrsomlraenrdcinnonrecriidaai |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s12936-023-04604-4 doi (DE-627)SPR051817829 (SPR)s12936-023-04604-4-e DE-627 ger DE-627 rakwb eng Lu, Guangyu verfasserin aut Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle–Ottawa Scale (aNOS). Results A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. Conclusions Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models. Malaria elimination (dpeaa)DE-He213 Re-introduction risk (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Prediction models (dpeaa)DE-He213 Systematic review (dpeaa)DE-He213 Zhang, Dongying aut Chen, Juan aut Cao, Yuanyuan aut Chai, Liying aut Liu, Kaixuan aut Chong, Zeying aut Zhang, Yuying aut Lu, Yan aut Heuschen, Anna-Katharina aut Müller, Olaf aut Zhu, Guoding aut Cao, Jun aut Enthalten in Malaria journal London : BioMed Central, 2002 22(2023), 1 vom: 06. Juni (DE-627)355986582 (DE-600)2091229-8 1475-2875 nnns volume:22 year:2023 number:1 day:06 month:06 https://dx.doi.org/10.1186/s12936-023-04604-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2023 1 06 06 |
spelling |
10.1186/s12936-023-04604-4 doi (DE-627)SPR051817829 (SPR)s12936-023-04604-4-e DE-627 ger DE-627 rakwb eng Lu, Guangyu verfasserin aut Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle–Ottawa Scale (aNOS). Results A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. Conclusions Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models. Malaria elimination (dpeaa)DE-He213 Re-introduction risk (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Prediction models (dpeaa)DE-He213 Systematic review (dpeaa)DE-He213 Zhang, Dongying aut Chen, Juan aut Cao, Yuanyuan aut Chai, Liying aut Liu, Kaixuan aut Chong, Zeying aut Zhang, Yuying aut Lu, Yan aut Heuschen, Anna-Katharina aut Müller, Olaf aut Zhu, Guoding aut Cao, Jun aut Enthalten in Malaria journal London : BioMed Central, 2002 22(2023), 1 vom: 06. Juni (DE-627)355986582 (DE-600)2091229-8 1475-2875 nnns volume:22 year:2023 number:1 day:06 month:06 https://dx.doi.org/10.1186/s12936-023-04604-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2023 1 06 06 |
allfields_unstemmed |
10.1186/s12936-023-04604-4 doi (DE-627)SPR051817829 (SPR)s12936-023-04604-4-e DE-627 ger DE-627 rakwb eng Lu, Guangyu verfasserin aut Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle–Ottawa Scale (aNOS). Results A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. Conclusions Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models. Malaria elimination (dpeaa)DE-He213 Re-introduction risk (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Prediction models (dpeaa)DE-He213 Systematic review (dpeaa)DE-He213 Zhang, Dongying aut Chen, Juan aut Cao, Yuanyuan aut Chai, Liying aut Liu, Kaixuan aut Chong, Zeying aut Zhang, Yuying aut Lu, Yan aut Heuschen, Anna-Katharina aut Müller, Olaf aut Zhu, Guoding aut Cao, Jun aut Enthalten in Malaria journal London : BioMed Central, 2002 22(2023), 1 vom: 06. Juni (DE-627)355986582 (DE-600)2091229-8 1475-2875 nnns volume:22 year:2023 number:1 day:06 month:06 https://dx.doi.org/10.1186/s12936-023-04604-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2023 1 06 06 |
allfieldsGer |
10.1186/s12936-023-04604-4 doi (DE-627)SPR051817829 (SPR)s12936-023-04604-4-e DE-627 ger DE-627 rakwb eng Lu, Guangyu verfasserin aut Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle–Ottawa Scale (aNOS). Results A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. Conclusions Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models. Malaria elimination (dpeaa)DE-He213 Re-introduction risk (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Prediction models (dpeaa)DE-He213 Systematic review (dpeaa)DE-He213 Zhang, Dongying aut Chen, Juan aut Cao, Yuanyuan aut Chai, Liying aut Liu, Kaixuan aut Chong, Zeying aut Zhang, Yuying aut Lu, Yan aut Heuschen, Anna-Katharina aut Müller, Olaf aut Zhu, Guoding aut Cao, Jun aut Enthalten in Malaria journal London : BioMed Central, 2002 22(2023), 1 vom: 06. Juni (DE-627)355986582 (DE-600)2091229-8 1475-2875 nnns volume:22 year:2023 number:1 day:06 month:06 https://dx.doi.org/10.1186/s12936-023-04604-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2023 1 06 06 |
allfieldsSound |
10.1186/s12936-023-04604-4 doi (DE-627)SPR051817829 (SPR)s12936-023-04604-4-e DE-627 ger DE-627 rakwb eng Lu, Guangyu verfasserin aut Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle–Ottawa Scale (aNOS). Results A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. Conclusions Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models. Malaria elimination (dpeaa)DE-He213 Re-introduction risk (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Prediction models (dpeaa)DE-He213 Systematic review (dpeaa)DE-He213 Zhang, Dongying aut Chen, Juan aut Cao, Yuanyuan aut Chai, Liying aut Liu, Kaixuan aut Chong, Zeying aut Zhang, Yuying aut Lu, Yan aut Heuschen, Anna-Katharina aut Müller, Olaf aut Zhu, Guoding aut Cao, Jun aut Enthalten in Malaria journal London : BioMed Central, 2002 22(2023), 1 vom: 06. Juni (DE-627)355986582 (DE-600)2091229-8 1475-2875 nnns volume:22 year:2023 number:1 day:06 month:06 https://dx.doi.org/10.1186/s12936-023-04604-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 22 2023 1 06 06 |
language |
English |
source |
Enthalten in Malaria journal 22(2023), 1 vom: 06. Juni volume:22 year:2023 number:1 day:06 month:06 |
sourceStr |
Enthalten in Malaria journal 22(2023), 1 vom: 06. Juni volume:22 year:2023 number:1 day:06 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Malaria elimination Re-introduction risk Surveillance Prediction models Systematic review |
isfreeaccess_bool |
true |
container_title |
Malaria journal |
authorswithroles_txt_mv |
Lu, Guangyu @@aut@@ Zhang, Dongying @@aut@@ Chen, Juan @@aut@@ Cao, Yuanyuan @@aut@@ Chai, Liying @@aut@@ Liu, Kaixuan @@aut@@ Chong, Zeying @@aut@@ Zhang, Yuying @@aut@@ Lu, Yan @@aut@@ Heuschen, Anna-Katharina @@aut@@ Müller, Olaf @@aut@@ Zhu, Guoding @@aut@@ Cao, Jun @@aut@@ |
publishDateDaySort_date |
2023-06-06T00:00:00Z |
hierarchy_top_id |
355986582 |
id |
SPR051817829 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051817829</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230607064711.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230607s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12936-023-04604-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051817829</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12936-023-04604-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Guangyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle–Ottawa Scale (aNOS). Results A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. Conclusions Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Malaria elimination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Re-introduction risk</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surveillance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systematic review</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Dongying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Juan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Yuanyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chai, Liying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Kaixuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chong, Zeying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yuying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heuschen, Anna-Katharina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Müller, Olaf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Guoding</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Malaria journal</subfield><subfield code="d">London : BioMed Central, 2002</subfield><subfield code="g">22(2023), 1 vom: 06. Juni</subfield><subfield code="w">(DE-627)355986582</subfield><subfield code="w">(DE-600)2091229-8</subfield><subfield code="x">1475-2875</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12936-023-04604-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Lu, Guangyu |
spellingShingle |
Lu, Guangyu misc Malaria elimination misc Re-introduction risk misc Surveillance misc Prediction models misc Systematic review Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review |
authorStr |
Lu, Guangyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)355986582 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1475-2875 |
topic_title |
Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review Malaria elimination (dpeaa)DE-He213 Re-introduction risk (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Prediction models (dpeaa)DE-He213 Systematic review (dpeaa)DE-He213 |
topic |
misc Malaria elimination misc Re-introduction risk misc Surveillance misc Prediction models misc Systematic review |
topic_unstemmed |
misc Malaria elimination misc Re-introduction risk misc Surveillance misc Prediction models misc Systematic review |
topic_browse |
misc Malaria elimination misc Re-introduction risk misc Surveillance misc Prediction models misc Systematic review |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Malaria journal |
hierarchy_parent_id |
355986582 |
hierarchy_top_title |
Malaria journal |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)355986582 (DE-600)2091229-8 |
title |
Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review |
ctrlnum |
(DE-627)SPR051817829 (SPR)s12936-023-04604-4-e |
title_full |
Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review |
author_sort |
Lu, Guangyu |
journal |
Malaria journal |
journalStr |
Malaria journal |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Lu, Guangyu Zhang, Dongying Chen, Juan Cao, Yuanyuan Chai, Liying Liu, Kaixuan Chong, Zeying Zhang, Yuying Lu, Yan Heuschen, Anna-Katharina Müller, Olaf Zhu, Guoding Cao, Jun |
container_volume |
22 |
format_se |
Elektronische Aufsätze |
author-letter |
Lu, Guangyu |
doi_str_mv |
10.1186/s12936-023-04604-4 |
title_sort |
predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review |
title_auth |
Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review |
abstract |
Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle–Ottawa Scale (aNOS). Results A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. Conclusions Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models. © The Author(s) 2023 |
abstractGer |
Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle–Ottawa Scale (aNOS). Results A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. Conclusions Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models. © The Author(s) 2023 |
abstract_unstemmed |
Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle–Ottawa Scale (aNOS). Results A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. Conclusions Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review |
url |
https://dx.doi.org/10.1186/s12936-023-04604-4 |
remote_bool |
true |
author2 |
Zhang, Dongying Chen, Juan Cao, Yuanyuan Chai, Liying Liu, Kaixuan Chong, Zeying Zhang, Yuying Lu, Yan Heuschen, Anna-Katharina Müller, Olaf Zhu, Guoding Cao, Jun |
author2Str |
Zhang, Dongying Chen, Juan Cao, Yuanyuan Chai, Liying Liu, Kaixuan Chong, Zeying Zhang, Yuying Lu, Yan Heuschen, Anna-Katharina Müller, Olaf Zhu, Guoding Cao, Jun |
ppnlink |
355986582 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12936-023-04604-4 |
up_date |
2024-07-03T23:55:42.472Z |
_version_ |
1803604137064005632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051817829</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230607064711.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230607s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12936-023-04604-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051817829</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12936-023-04604-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Guangyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting the risk of malaria re-introduction in countries certified malaria-free: a systematic review</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Predicting the risk of malaria in countries certified malaria-free is crucial for the prevention of re-introduction. This review aimed to identify and describe existing prediction models for malaria re-introduction risk in eliminated settings. Methods A systematic literature search following the PRISMA guidelines was carried out. Studies that developed or validated a malaria risk prediction model in eliminated settings were included. At least two authors independently extracted data using a pre-defined checklist developed by experts in the field. The risk of bias was assessed using both the prediction model risk of bias assessment tool (PROBAST) and the adapted Newcastle–Ottawa Scale (aNOS). Results A total 10,075 references were screened and 10 articles describing 11 malaria re-introduction risk prediction models in 6 countries certified malaria free. Three-fifths of the included prediction models were developed for the European region. Identified parameters predicting malaria re-introduction risk included environmental and meteorological, vectorial, population migration, and surveillance and response related factors. Substantial heterogeneity in predictors was observed among the models. All studies were rated at a high risk of bias by PROBAST, mostly because of a lack of internal and external validation of the models. Some studies were rated at a low risk of bias by the aNOS scale. Conclusions Malaria re-introduction risk remains substantial in many countries that have eliminated malaria. Multiple factors were identified which could predict malaria risk in eliminated settings. Although the population movement is well acknowledged as a risk factor associated with the malaria re-introduction risk in eliminated settings, it is not frequently incorporated in the risk prediction models. This review indicated that the proposed models were generally poorly validated. Therefore, future emphasis should be first placed on the validation of existing models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Malaria elimination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Re-introduction risk</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surveillance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systematic review</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Dongying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Juan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Yuanyuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chai, Liying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Kaixuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chong, Zeying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yuying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heuschen, Anna-Katharina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Müller, Olaf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Guoding</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Malaria journal</subfield><subfield code="d">London : BioMed Central, 2002</subfield><subfield code="g">22(2023), 1 vom: 06. Juni</subfield><subfield code="w">(DE-627)355986582</subfield><subfield code="w">(DE-600)2091229-8</subfield><subfield code="x">1475-2875</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:22</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12936-023-04604-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">22</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.401513 |