Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer
Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]...
Ausführliche Beschreibung
Autor*in: |
Ghezzo, Samuele [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: European journal of nuclear medicine and molecular imaging - Heidelberg [u.a.] : Springer-Verl., 2002, 50(2023), 8 vom: 18. März, Seite 2548-2560 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2023 ; number:8 ; day:18 ; month:03 ; pages:2548-2560 |
Links: |
---|
DOI / URN: |
10.1007/s00259-023-06187-3 |
---|
Katalog-ID: |
SPR051832453 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR051832453 | ||
003 | DE-627 | ||
005 | 20230609200746.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230609s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00259-023-06187-3 |2 doi | |
035 | |a (DE-627)SPR051832453 | ||
035 | |a (SPR)s00259-023-06187-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ghezzo, Samuele |e verfasserin |4 aut | |
245 | 1 | 0 | |a Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p > 0.05). Conclusion These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade. | ||
650 | 4 | |a Radiomics |7 (dpeaa)DE-He213 | |
650 | 4 | |a PSMA |7 (dpeaa)DE-He213 | |
650 | 4 | |a ISUP grade |7 (dpeaa)DE-He213 | |
650 | 4 | |a PET |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prostate cancer |7 (dpeaa)DE-He213 | |
700 | 1 | |a Mapelli, Paola |4 aut | |
700 | 1 | |a Bezzi, Carolina |4 aut | |
700 | 1 | |a Samanes Gajate, Ana Maria |4 aut | |
700 | 1 | |a Brembilla, Giorgio |4 aut | |
700 | 1 | |a Gotuzzo, Irene |4 aut | |
700 | 1 | |a Russo, Tommaso |4 aut | |
700 | 1 | |a Preza, Erik |4 aut | |
700 | 1 | |a Cucchiara, Vito |4 aut | |
700 | 1 | |a Ahmed, Naghia |4 aut | |
700 | 1 | |a Neri, Ilaria |4 aut | |
700 | 1 | |a Mongardi, Sofia |4 aut | |
700 | 1 | |a Freschi, Massimo |4 aut | |
700 | 1 | |a Briganti, Alberto |4 aut | |
700 | 1 | |a De Cobelli, Francesco |4 aut | |
700 | 1 | |a Gianolli, Luigi |4 aut | |
700 | 1 | |a Scifo, Paola |4 aut | |
700 | 1 | |a Picchio, Maria |0 (orcid)0000-0002-7532-6211 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t European journal of nuclear medicine and molecular imaging |d Heidelberg [u.a.] : Springer-Verl., 2002 |g 50(2023), 8 vom: 18. März, Seite 2548-2560 |w (DE-627)359787258 |w (DE-600)2098375-X |x 1619-7089 |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2023 |g number:8 |g day:18 |g month:03 |g pages:2548-2560 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00259-023-06187-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 50 |j 2023 |e 8 |b 18 |c 03 |h 2548-2560 |
author_variant |
s g sg p m pm c b cb g a m s gam gams g b gb i g ig t r tr e p ep v c vc n a na i n in s m sm m f mf a b ab c f d cf cfd l g lg p s ps m p mp |
---|---|
matchkey_str |
article:16197089:2023----::oef8aasa1erdoisordcpssriaiugae |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s00259-023-06187-3 doi (DE-627)SPR051832453 (SPR)s00259-023-06187-3-e DE-627 ger DE-627 rakwb eng Ghezzo, Samuele verfasserin aut Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p > 0.05). Conclusion These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade. Radiomics (dpeaa)DE-He213 PSMA (dpeaa)DE-He213 ISUP grade (dpeaa)DE-He213 PET (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 Mapelli, Paola aut Bezzi, Carolina aut Samanes Gajate, Ana Maria aut Brembilla, Giorgio aut Gotuzzo, Irene aut Russo, Tommaso aut Preza, Erik aut Cucchiara, Vito aut Ahmed, Naghia aut Neri, Ilaria aut Mongardi, Sofia aut Freschi, Massimo aut Briganti, Alberto aut De Cobelli, Francesco aut Gianolli, Luigi aut Scifo, Paola aut Picchio, Maria (orcid)0000-0002-7532-6211 aut Enthalten in European journal of nuclear medicine and molecular imaging Heidelberg [u.a.] : Springer-Verl., 2002 50(2023), 8 vom: 18. März, Seite 2548-2560 (DE-627)359787258 (DE-600)2098375-X 1619-7089 nnns volume:50 year:2023 number:8 day:18 month:03 pages:2548-2560 https://dx.doi.org/10.1007/s00259-023-06187-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2023 8 18 03 2548-2560 |
spelling |
10.1007/s00259-023-06187-3 doi (DE-627)SPR051832453 (SPR)s00259-023-06187-3-e DE-627 ger DE-627 rakwb eng Ghezzo, Samuele verfasserin aut Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p > 0.05). Conclusion These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade. Radiomics (dpeaa)DE-He213 PSMA (dpeaa)DE-He213 ISUP grade (dpeaa)DE-He213 PET (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 Mapelli, Paola aut Bezzi, Carolina aut Samanes Gajate, Ana Maria aut Brembilla, Giorgio aut Gotuzzo, Irene aut Russo, Tommaso aut Preza, Erik aut Cucchiara, Vito aut Ahmed, Naghia aut Neri, Ilaria aut Mongardi, Sofia aut Freschi, Massimo aut Briganti, Alberto aut De Cobelli, Francesco aut Gianolli, Luigi aut Scifo, Paola aut Picchio, Maria (orcid)0000-0002-7532-6211 aut Enthalten in European journal of nuclear medicine and molecular imaging Heidelberg [u.a.] : Springer-Verl., 2002 50(2023), 8 vom: 18. März, Seite 2548-2560 (DE-627)359787258 (DE-600)2098375-X 1619-7089 nnns volume:50 year:2023 number:8 day:18 month:03 pages:2548-2560 https://dx.doi.org/10.1007/s00259-023-06187-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2023 8 18 03 2548-2560 |
allfields_unstemmed |
10.1007/s00259-023-06187-3 doi (DE-627)SPR051832453 (SPR)s00259-023-06187-3-e DE-627 ger DE-627 rakwb eng Ghezzo, Samuele verfasserin aut Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p > 0.05). Conclusion These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade. Radiomics (dpeaa)DE-He213 PSMA (dpeaa)DE-He213 ISUP grade (dpeaa)DE-He213 PET (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 Mapelli, Paola aut Bezzi, Carolina aut Samanes Gajate, Ana Maria aut Brembilla, Giorgio aut Gotuzzo, Irene aut Russo, Tommaso aut Preza, Erik aut Cucchiara, Vito aut Ahmed, Naghia aut Neri, Ilaria aut Mongardi, Sofia aut Freschi, Massimo aut Briganti, Alberto aut De Cobelli, Francesco aut Gianolli, Luigi aut Scifo, Paola aut Picchio, Maria (orcid)0000-0002-7532-6211 aut Enthalten in European journal of nuclear medicine and molecular imaging Heidelberg [u.a.] : Springer-Verl., 2002 50(2023), 8 vom: 18. März, Seite 2548-2560 (DE-627)359787258 (DE-600)2098375-X 1619-7089 nnns volume:50 year:2023 number:8 day:18 month:03 pages:2548-2560 https://dx.doi.org/10.1007/s00259-023-06187-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2023 8 18 03 2548-2560 |
allfieldsGer |
10.1007/s00259-023-06187-3 doi (DE-627)SPR051832453 (SPR)s00259-023-06187-3-e DE-627 ger DE-627 rakwb eng Ghezzo, Samuele verfasserin aut Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p > 0.05). Conclusion These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade. Radiomics (dpeaa)DE-He213 PSMA (dpeaa)DE-He213 ISUP grade (dpeaa)DE-He213 PET (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 Mapelli, Paola aut Bezzi, Carolina aut Samanes Gajate, Ana Maria aut Brembilla, Giorgio aut Gotuzzo, Irene aut Russo, Tommaso aut Preza, Erik aut Cucchiara, Vito aut Ahmed, Naghia aut Neri, Ilaria aut Mongardi, Sofia aut Freschi, Massimo aut Briganti, Alberto aut De Cobelli, Francesco aut Gianolli, Luigi aut Scifo, Paola aut Picchio, Maria (orcid)0000-0002-7532-6211 aut Enthalten in European journal of nuclear medicine and molecular imaging Heidelberg [u.a.] : Springer-Verl., 2002 50(2023), 8 vom: 18. März, Seite 2548-2560 (DE-627)359787258 (DE-600)2098375-X 1619-7089 nnns volume:50 year:2023 number:8 day:18 month:03 pages:2548-2560 https://dx.doi.org/10.1007/s00259-023-06187-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2023 8 18 03 2548-2560 |
allfieldsSound |
10.1007/s00259-023-06187-3 doi (DE-627)SPR051832453 (SPR)s00259-023-06187-3-e DE-627 ger DE-627 rakwb eng Ghezzo, Samuele verfasserin aut Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p > 0.05). Conclusion These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade. Radiomics (dpeaa)DE-He213 PSMA (dpeaa)DE-He213 ISUP grade (dpeaa)DE-He213 PET (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 Mapelli, Paola aut Bezzi, Carolina aut Samanes Gajate, Ana Maria aut Brembilla, Giorgio aut Gotuzzo, Irene aut Russo, Tommaso aut Preza, Erik aut Cucchiara, Vito aut Ahmed, Naghia aut Neri, Ilaria aut Mongardi, Sofia aut Freschi, Massimo aut Briganti, Alberto aut De Cobelli, Francesco aut Gianolli, Luigi aut Scifo, Paola aut Picchio, Maria (orcid)0000-0002-7532-6211 aut Enthalten in European journal of nuclear medicine and molecular imaging Heidelberg [u.a.] : Springer-Verl., 2002 50(2023), 8 vom: 18. März, Seite 2548-2560 (DE-627)359787258 (DE-600)2098375-X 1619-7089 nnns volume:50 year:2023 number:8 day:18 month:03 pages:2548-2560 https://dx.doi.org/10.1007/s00259-023-06187-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2023 8 18 03 2548-2560 |
language |
English |
source |
Enthalten in European journal of nuclear medicine and molecular imaging 50(2023), 8 vom: 18. März, Seite 2548-2560 volume:50 year:2023 number:8 day:18 month:03 pages:2548-2560 |
sourceStr |
Enthalten in European journal of nuclear medicine and molecular imaging 50(2023), 8 vom: 18. März, Seite 2548-2560 volume:50 year:2023 number:8 day:18 month:03 pages:2548-2560 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Radiomics PSMA ISUP grade PET Prostate cancer |
isfreeaccess_bool |
false |
container_title |
European journal of nuclear medicine and molecular imaging |
authorswithroles_txt_mv |
Ghezzo, Samuele @@aut@@ Mapelli, Paola @@aut@@ Bezzi, Carolina @@aut@@ Samanes Gajate, Ana Maria @@aut@@ Brembilla, Giorgio @@aut@@ Gotuzzo, Irene @@aut@@ Russo, Tommaso @@aut@@ Preza, Erik @@aut@@ Cucchiara, Vito @@aut@@ Ahmed, Naghia @@aut@@ Neri, Ilaria @@aut@@ Mongardi, Sofia @@aut@@ Freschi, Massimo @@aut@@ Briganti, Alberto @@aut@@ De Cobelli, Francesco @@aut@@ Gianolli, Luigi @@aut@@ Scifo, Paola @@aut@@ Picchio, Maria @@aut@@ |
publishDateDaySort_date |
2023-03-18T00:00:00Z |
hierarchy_top_id |
359787258 |
id |
SPR051832453 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051832453</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230609200746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230609s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00259-023-06187-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051832453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00259-023-06187-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghezzo, Samuele</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p > 0.05). Conclusion These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PSMA</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ISUP grade</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PET</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mapelli, Paola</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bezzi, Carolina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samanes Gajate, Ana Maria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brembilla, Giorgio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gotuzzo, Irene</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Tommaso</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Preza, Erik</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cucchiara, Vito</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahmed, Naghia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neri, Ilaria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mongardi, Sofia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Freschi, Massimo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Briganti, Alberto</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Cobelli, Francesco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gianolli, Luigi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scifo, Paola</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Picchio, Maria</subfield><subfield code="0">(orcid)0000-0002-7532-6211</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European journal of nuclear medicine and molecular imaging</subfield><subfield code="d">Heidelberg [u.a.] : Springer-Verl., 2002</subfield><subfield code="g">50(2023), 8 vom: 18. März, Seite 2548-2560</subfield><subfield code="w">(DE-627)359787258</subfield><subfield code="w">(DE-600)2098375-X</subfield><subfield code="x">1619-7089</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8</subfield><subfield code="g">day:18</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2548-2560</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00259-023-06187-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2023</subfield><subfield code="e">8</subfield><subfield code="b">18</subfield><subfield code="c">03</subfield><subfield code="h">2548-2560</subfield></datafield></record></collection>
|
author |
Ghezzo, Samuele |
spellingShingle |
Ghezzo, Samuele misc Radiomics misc PSMA misc ISUP grade misc PET misc Prostate cancer Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer |
authorStr |
Ghezzo, Samuele |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)359787258 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1619-7089 |
topic_title |
Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer Radiomics (dpeaa)DE-He213 PSMA (dpeaa)DE-He213 ISUP grade (dpeaa)DE-He213 PET (dpeaa)DE-He213 Prostate cancer (dpeaa)DE-He213 |
topic |
misc Radiomics misc PSMA misc ISUP grade misc PET misc Prostate cancer |
topic_unstemmed |
misc Radiomics misc PSMA misc ISUP grade misc PET misc Prostate cancer |
topic_browse |
misc Radiomics misc PSMA misc ISUP grade misc PET misc Prostate cancer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
European journal of nuclear medicine and molecular imaging |
hierarchy_parent_id |
359787258 |
hierarchy_top_title |
European journal of nuclear medicine and molecular imaging |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)359787258 (DE-600)2098375-X |
title |
Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer |
ctrlnum |
(DE-627)SPR051832453 (SPR)s00259-023-06187-3-e |
title_full |
Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer |
author_sort |
Ghezzo, Samuele |
journal |
European journal of nuclear medicine and molecular imaging |
journalStr |
European journal of nuclear medicine and molecular imaging |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
2548 |
author_browse |
Ghezzo, Samuele Mapelli, Paola Bezzi, Carolina Samanes Gajate, Ana Maria Brembilla, Giorgio Gotuzzo, Irene Russo, Tommaso Preza, Erik Cucchiara, Vito Ahmed, Naghia Neri, Ilaria Mongardi, Sofia Freschi, Massimo Briganti, Alberto De Cobelli, Francesco Gianolli, Luigi Scifo, Paola Picchio, Maria |
container_volume |
50 |
format_se |
Elektronische Aufsätze |
author-letter |
Ghezzo, Samuele |
doi_str_mv |
10.1007/s00259-023-06187-3 |
normlink |
(ORCID)0000-0002-7532-6211 |
normlink_prefix_str_mv |
(orcid)0000-0002-7532-6211 |
title_sort |
role of [68ga]ga-psma-11 pet radiomics to predict post-surgical isup grade in primary prostate cancer |
title_auth |
Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer |
abstract |
Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p > 0.05). Conclusion These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p > 0.05). Conclusion These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p > 0.05). Conclusion These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer |
url |
https://dx.doi.org/10.1007/s00259-023-06187-3 |
remote_bool |
true |
author2 |
Mapelli, Paola Bezzi, Carolina Samanes Gajate, Ana Maria Brembilla, Giorgio Gotuzzo, Irene Russo, Tommaso Preza, Erik Cucchiara, Vito Ahmed, Naghia Neri, Ilaria Mongardi, Sofia Freschi, Massimo Briganti, Alberto De Cobelli, Francesco Gianolli, Luigi Scifo, Paola Picchio, Maria |
author2Str |
Mapelli, Paola Bezzi, Carolina Samanes Gajate, Ana Maria Brembilla, Giorgio Gotuzzo, Irene Russo, Tommaso Preza, Erik Cucchiara, Vito Ahmed, Naghia Neri, Ilaria Mongardi, Sofia Freschi, Massimo Briganti, Alberto De Cobelli, Francesco Gianolli, Luigi Scifo, Paola Picchio, Maria |
ppnlink |
359787258 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00259-023-06187-3 |
up_date |
2024-07-03T23:59:59.111Z |
_version_ |
1803604406162161664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051832453</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230609200746.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230609s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00259-023-06187-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051832453</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00259-023-06187-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghezzo, Samuele</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of [68Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose The aim of this study is to investigate the role of [68Ga]Ga-PSMA-11 PET radiomics for the prediction of post-surgical International Society of Urological Pathology (PSISUP) grade in primary prostate cancer (PCa). Methods This retrospective study included 47 PCa patients who underwent [68Ga]Ga-PSMA-11 PET at IRCCS San Raffaele Scientific Institute before radical prostatectomy. The whole prostate was manually contoured on PET images and 103 image biomarker standardization initiative (IBSI)-compliant radiomic features (RFs) were extracted. Features were then selected using the minimum redundancy maximum relevance algorithm and a combination of the 4 most relevant RFs was used to train 12 radiomics machine learning models for the prediction of PSISUP grade: ISUP ≥ 4 vs ISUP < 4. Machine learning models were validated by means of fivefold repeated cross-validation, and two control models were generated to assess that our findings were not surrogates of spurious associations. Balanced accuracy (bACC) was collected for all generated models and compared with Kruskal–Wallis and Mann–Whitney tests. Sensitivity, specificity, and positive and negative predictive values were also reported to provide a complete overview of models’ performance. The predictions of the best performing model were compared against ISUP grade at biopsy. Results ISUP grade at biopsy was upgraded in 9/47 patients after prostatectomy, resulting in a bACC = 85.9%, SN = 71.9%, SP = 100%, PPV = 100%, and NPV = 62.5%, while the best-performing radiomic model yielded a bACC = 87.6%, SN = 88.6%, SP = 86.7%, PPV = 94%, and NPV = 82.5%. All radiomic models trained with at least 2 RFs (GLSZM—Zone Entropy and Shape—Least Axis Length) outperformed the control models. Conversely, no significant differences were found for radiomic models trained with 2 or more RFs (Mann–Whitney p > 0.05). Conclusion These findings support the role of [68Ga]Ga-PSMA-11 PET radiomics for the accurate and non-invasive prediction of PSISUP grade.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiomics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PSMA</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ISUP grade</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PET</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mapelli, Paola</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bezzi, Carolina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Samanes Gajate, Ana Maria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brembilla, Giorgio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gotuzzo, Irene</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Tommaso</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Preza, Erik</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cucchiara, Vito</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ahmed, Naghia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neri, Ilaria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mongardi, Sofia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Freschi, Massimo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Briganti, Alberto</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Cobelli, Francesco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gianolli, Luigi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scifo, Paola</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Picchio, Maria</subfield><subfield code="0">(orcid)0000-0002-7532-6211</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European journal of nuclear medicine and molecular imaging</subfield><subfield code="d">Heidelberg [u.a.] : Springer-Verl., 2002</subfield><subfield code="g">50(2023), 8 vom: 18. März, Seite 2548-2560</subfield><subfield code="w">(DE-627)359787258</subfield><subfield code="w">(DE-600)2098375-X</subfield><subfield code="x">1619-7089</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8</subfield><subfield code="g">day:18</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2548-2560</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00259-023-06187-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2023</subfield><subfield code="e">8</subfield><subfield code="b">18</subfield><subfield code="c">03</subfield><subfield code="h">2548-2560</subfield></datafield></record></collection>
|
score |
7.4013615 |