Unemployment rate forecasting: LSTM-GRU hybrid approach
Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing...
Ausführliche Beschreibung
Autor*in: |
Yurtsever, Mustafa [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal for labour market research - Berlin : Springer, 2004, 57(2023), 1 vom: 08. Juni |
---|---|
Übergeordnetes Werk: |
volume:57 ; year:2023 ; number:1 ; day:08 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s12651-023-00345-8 |
---|
Katalog-ID: |
SPR05183961X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR05183961X | ||
003 | DE-627 | ||
005 | 20230609200808.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230609s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12651-023-00345-8 |2 doi | |
035 | |a (DE-627)SPR05183961X | ||
035 | |a (SPR)s12651-023-00345-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Yurtsever, Mustafa |e verfasserin |0 (orcid)0000-0003-2232-0542 |4 aut | |
245 | 1 | 0 | |a Unemployment rate forecasting: LSTM-GRU hybrid approach |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing new forecasting models to successfully predict the unemployment rate. This article presents a new model that combines two deep learning methodologies used for time series forecasting to find the future state of the unemployment rate. The model, created by combining LSTM and GRU layers, has been used to forecast unemployment rates in the United States, United Kingdom, France and Italy. Monthly unemployment rate data was used as the dataset between January 1983 and May 2022. The model’s performance was evaluated using RMSE, MAPE, and MAE values and compared to a stand-alone LSTM and GRU model. Results indicate that the hybrid model performed better for the four countries, except for Italy where the GRU model yielded better results. | ||
650 | 4 | |a Unemployment |7 (dpeaa)DE-He213 | |
650 | 4 | |a Forecasting |7 (dpeaa)DE-He213 | |
650 | 4 | |a Deep learning |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Journal for labour market research |d Berlin : Springer, 2004 |g 57(2023), 1 vom: 08. Juni |w (DE-627)535186827 |w (DE-600)2375725-5 |x 1867-8343 |7 nnns |
773 | 1 | 8 | |g volume:57 |g year:2023 |g number:1 |g day:08 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12651-023-00345-8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_183 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 57 |j 2023 |e 1 |b 08 |c 06 |
author_variant |
m y my |
---|---|
matchkey_str |
article:18678343:2023----::nmlyetaeoeatnltguy |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s12651-023-00345-8 doi (DE-627)SPR05183961X (SPR)s12651-023-00345-8-e DE-627 ger DE-627 rakwb eng Yurtsever, Mustafa verfasserin (orcid)0000-0003-2232-0542 aut Unemployment rate forecasting: LSTM-GRU hybrid approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing new forecasting models to successfully predict the unemployment rate. This article presents a new model that combines two deep learning methodologies used for time series forecasting to find the future state of the unemployment rate. The model, created by combining LSTM and GRU layers, has been used to forecast unemployment rates in the United States, United Kingdom, France and Italy. Monthly unemployment rate data was used as the dataset between January 1983 and May 2022. The model’s performance was evaluated using RMSE, MAPE, and MAE values and compared to a stand-alone LSTM and GRU model. Results indicate that the hybrid model performed better for the four countries, except for Italy where the GRU model yielded better results. Unemployment (dpeaa)DE-He213 Forecasting (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Enthalten in Journal for labour market research Berlin : Springer, 2004 57(2023), 1 vom: 08. Juni (DE-627)535186827 (DE-600)2375725-5 1867-8343 nnns volume:57 year:2023 number:1 day:08 month:06 https://dx.doi.org/10.1186/s12651-023-00345-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_183 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2037 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2153 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 57 2023 1 08 06 |
spelling |
10.1186/s12651-023-00345-8 doi (DE-627)SPR05183961X (SPR)s12651-023-00345-8-e DE-627 ger DE-627 rakwb eng Yurtsever, Mustafa verfasserin (orcid)0000-0003-2232-0542 aut Unemployment rate forecasting: LSTM-GRU hybrid approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing new forecasting models to successfully predict the unemployment rate. This article presents a new model that combines two deep learning methodologies used for time series forecasting to find the future state of the unemployment rate. The model, created by combining LSTM and GRU layers, has been used to forecast unemployment rates in the United States, United Kingdom, France and Italy. Monthly unemployment rate data was used as the dataset between January 1983 and May 2022. The model’s performance was evaluated using RMSE, MAPE, and MAE values and compared to a stand-alone LSTM and GRU model. Results indicate that the hybrid model performed better for the four countries, except for Italy where the GRU model yielded better results. Unemployment (dpeaa)DE-He213 Forecasting (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Enthalten in Journal for labour market research Berlin : Springer, 2004 57(2023), 1 vom: 08. Juni (DE-627)535186827 (DE-600)2375725-5 1867-8343 nnns volume:57 year:2023 number:1 day:08 month:06 https://dx.doi.org/10.1186/s12651-023-00345-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_183 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2037 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2153 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 57 2023 1 08 06 |
allfields_unstemmed |
10.1186/s12651-023-00345-8 doi (DE-627)SPR05183961X (SPR)s12651-023-00345-8-e DE-627 ger DE-627 rakwb eng Yurtsever, Mustafa verfasserin (orcid)0000-0003-2232-0542 aut Unemployment rate forecasting: LSTM-GRU hybrid approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing new forecasting models to successfully predict the unemployment rate. This article presents a new model that combines two deep learning methodologies used for time series forecasting to find the future state of the unemployment rate. The model, created by combining LSTM and GRU layers, has been used to forecast unemployment rates in the United States, United Kingdom, France and Italy. Monthly unemployment rate data was used as the dataset between January 1983 and May 2022. The model’s performance was evaluated using RMSE, MAPE, and MAE values and compared to a stand-alone LSTM and GRU model. Results indicate that the hybrid model performed better for the four countries, except for Italy where the GRU model yielded better results. Unemployment (dpeaa)DE-He213 Forecasting (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Enthalten in Journal for labour market research Berlin : Springer, 2004 57(2023), 1 vom: 08. Juni (DE-627)535186827 (DE-600)2375725-5 1867-8343 nnns volume:57 year:2023 number:1 day:08 month:06 https://dx.doi.org/10.1186/s12651-023-00345-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_183 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2037 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2153 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 57 2023 1 08 06 |
allfieldsGer |
10.1186/s12651-023-00345-8 doi (DE-627)SPR05183961X (SPR)s12651-023-00345-8-e DE-627 ger DE-627 rakwb eng Yurtsever, Mustafa verfasserin (orcid)0000-0003-2232-0542 aut Unemployment rate forecasting: LSTM-GRU hybrid approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing new forecasting models to successfully predict the unemployment rate. This article presents a new model that combines two deep learning methodologies used for time series forecasting to find the future state of the unemployment rate. The model, created by combining LSTM and GRU layers, has been used to forecast unemployment rates in the United States, United Kingdom, France and Italy. Monthly unemployment rate data was used as the dataset between January 1983 and May 2022. The model’s performance was evaluated using RMSE, MAPE, and MAE values and compared to a stand-alone LSTM and GRU model. Results indicate that the hybrid model performed better for the four countries, except for Italy where the GRU model yielded better results. Unemployment (dpeaa)DE-He213 Forecasting (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Enthalten in Journal for labour market research Berlin : Springer, 2004 57(2023), 1 vom: 08. Juni (DE-627)535186827 (DE-600)2375725-5 1867-8343 nnns volume:57 year:2023 number:1 day:08 month:06 https://dx.doi.org/10.1186/s12651-023-00345-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_183 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2037 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2153 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 57 2023 1 08 06 |
allfieldsSound |
10.1186/s12651-023-00345-8 doi (DE-627)SPR05183961X (SPR)s12651-023-00345-8-e DE-627 ger DE-627 rakwb eng Yurtsever, Mustafa verfasserin (orcid)0000-0003-2232-0542 aut Unemployment rate forecasting: LSTM-GRU hybrid approach 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing new forecasting models to successfully predict the unemployment rate. This article presents a new model that combines two deep learning methodologies used for time series forecasting to find the future state of the unemployment rate. The model, created by combining LSTM and GRU layers, has been used to forecast unemployment rates in the United States, United Kingdom, France and Italy. Monthly unemployment rate data was used as the dataset between January 1983 and May 2022. The model’s performance was evaluated using RMSE, MAPE, and MAE values and compared to a stand-alone LSTM and GRU model. Results indicate that the hybrid model performed better for the four countries, except for Italy where the GRU model yielded better results. Unemployment (dpeaa)DE-He213 Forecasting (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 Enthalten in Journal for labour market research Berlin : Springer, 2004 57(2023), 1 vom: 08. Juni (DE-627)535186827 (DE-600)2375725-5 1867-8343 nnns volume:57 year:2023 number:1 day:08 month:06 https://dx.doi.org/10.1186/s12651-023-00345-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_183 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2037 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2153 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 57 2023 1 08 06 |
language |
English |
source |
Enthalten in Journal for labour market research 57(2023), 1 vom: 08. Juni volume:57 year:2023 number:1 day:08 month:06 |
sourceStr |
Enthalten in Journal for labour market research 57(2023), 1 vom: 08. Juni volume:57 year:2023 number:1 day:08 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Unemployment Forecasting Deep learning |
isfreeaccess_bool |
true |
container_title |
Journal for labour market research |
authorswithroles_txt_mv |
Yurtsever, Mustafa @@aut@@ |
publishDateDaySort_date |
2023-06-08T00:00:00Z |
hierarchy_top_id |
535186827 |
id |
SPR05183961X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05183961X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230609200808.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230609s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12651-023-00345-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05183961X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12651-023-00345-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yurtsever, Mustafa</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2232-0542</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unemployment rate forecasting: LSTM-GRU hybrid approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing new forecasting models to successfully predict the unemployment rate. This article presents a new model that combines two deep learning methodologies used for time series forecasting to find the future state of the unemployment rate. The model, created by combining LSTM and GRU layers, has been used to forecast unemployment rates in the United States, United Kingdom, France and Italy. Monthly unemployment rate data was used as the dataset between January 1983 and May 2022. The model’s performance was evaluated using RMSE, MAPE, and MAE values and compared to a stand-alone LSTM and GRU model. Results indicate that the hybrid model performed better for the four countries, except for Italy where the GRU model yielded better results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unemployment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forecasting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal for labour market research</subfield><subfield code="d">Berlin : Springer, 2004</subfield><subfield code="g">57(2023), 1 vom: 08. Juni</subfield><subfield code="w">(DE-627)535186827</subfield><subfield code="w">(DE-600)2375725-5</subfield><subfield code="x">1867-8343</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12651-023-00345-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Yurtsever, Mustafa |
spellingShingle |
Yurtsever, Mustafa misc Unemployment misc Forecasting misc Deep learning Unemployment rate forecasting: LSTM-GRU hybrid approach |
authorStr |
Yurtsever, Mustafa |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)535186827 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1867-8343 |
topic_title |
Unemployment rate forecasting: LSTM-GRU hybrid approach Unemployment (dpeaa)DE-He213 Forecasting (dpeaa)DE-He213 Deep learning (dpeaa)DE-He213 |
topic |
misc Unemployment misc Forecasting misc Deep learning |
topic_unstemmed |
misc Unemployment misc Forecasting misc Deep learning |
topic_browse |
misc Unemployment misc Forecasting misc Deep learning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal for labour market research |
hierarchy_parent_id |
535186827 |
hierarchy_top_title |
Journal for labour market research |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)535186827 (DE-600)2375725-5 |
title |
Unemployment rate forecasting: LSTM-GRU hybrid approach |
ctrlnum |
(DE-627)SPR05183961X (SPR)s12651-023-00345-8-e |
title_full |
Unemployment rate forecasting: LSTM-GRU hybrid approach |
author_sort |
Yurtsever, Mustafa |
journal |
Journal for labour market research |
journalStr |
Journal for labour market research |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Yurtsever, Mustafa |
container_volume |
57 |
format_se |
Elektronische Aufsätze |
author-letter |
Yurtsever, Mustafa |
doi_str_mv |
10.1186/s12651-023-00345-8 |
normlink |
(ORCID)0000-0003-2232-0542 |
normlink_prefix_str_mv |
(orcid)0000-0003-2232-0542 |
title_sort |
unemployment rate forecasting: lstm-gru hybrid approach |
title_auth |
Unemployment rate forecasting: LSTM-GRU hybrid approach |
abstract |
Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing new forecasting models to successfully predict the unemployment rate. This article presents a new model that combines two deep learning methodologies used for time series forecasting to find the future state of the unemployment rate. The model, created by combining LSTM and GRU layers, has been used to forecast unemployment rates in the United States, United Kingdom, France and Italy. Monthly unemployment rate data was used as the dataset between January 1983 and May 2022. The model’s performance was evaluated using RMSE, MAPE, and MAE values and compared to a stand-alone LSTM and GRU model. Results indicate that the hybrid model performed better for the four countries, except for Italy where the GRU model yielded better results. © The Author(s) 2023 |
abstractGer |
Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing new forecasting models to successfully predict the unemployment rate. This article presents a new model that combines two deep learning methodologies used for time series forecasting to find the future state of the unemployment rate. The model, created by combining LSTM and GRU layers, has been used to forecast unemployment rates in the United States, United Kingdom, France and Italy. Monthly unemployment rate data was used as the dataset between January 1983 and May 2022. The model’s performance was evaluated using RMSE, MAPE, and MAE values and compared to a stand-alone LSTM and GRU model. Results indicate that the hybrid model performed better for the four countries, except for Italy where the GRU model yielded better results. © The Author(s) 2023 |
abstract_unstemmed |
Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing new forecasting models to successfully predict the unemployment rate. This article presents a new model that combines two deep learning methodologies used for time series forecasting to find the future state of the unemployment rate. The model, created by combining LSTM and GRU layers, has been used to forecast unemployment rates in the United States, United Kingdom, France and Italy. Monthly unemployment rate data was used as the dataset between January 1983 and May 2022. The model’s performance was evaluated using RMSE, MAPE, and MAE values and compared to a stand-alone LSTM and GRU model. Results indicate that the hybrid model performed better for the four countries, except for Italy where the GRU model yielded better results. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_183 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2037 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2119 GBV_ILN_2153 GBV_ILN_2507 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Unemployment rate forecasting: LSTM-GRU hybrid approach |
url |
https://dx.doi.org/10.1186/s12651-023-00345-8 |
remote_bool |
true |
ppnlink |
535186827 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12651-023-00345-8 |
up_date |
2024-07-04T00:02:05.783Z |
_version_ |
1803604538988429312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05183961X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230609200808.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230609s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12651-023-00345-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05183961X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12651-023-00345-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yurtsever, Mustafa</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2232-0542</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unemployment rate forecasting: LSTM-GRU hybrid approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Unemployment rates provide information on the economic development of countries. Unemployment is not only an economic problem but also a social one. As such, unemployment rates are important for governments and policy makers. Therefore, researchers around the world are constantly developing new forecasting models to successfully predict the unemployment rate. This article presents a new model that combines two deep learning methodologies used for time series forecasting to find the future state of the unemployment rate. The model, created by combining LSTM and GRU layers, has been used to forecast unemployment rates in the United States, United Kingdom, France and Italy. Monthly unemployment rate data was used as the dataset between January 1983 and May 2022. The model’s performance was evaluated using RMSE, MAPE, and MAE values and compared to a stand-alone LSTM and GRU model. Results indicate that the hybrid model performed better for the four countries, except for Italy where the GRU model yielded better results.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unemployment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forecasting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal for labour market research</subfield><subfield code="d">Berlin : Springer, 2004</subfield><subfield code="g">57(2023), 1 vom: 08. Juni</subfield><subfield code="w">(DE-627)535186827</subfield><subfield code="w">(DE-600)2375725-5</subfield><subfield code="x">1867-8343</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12651-023-00345-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.400177 |