A data-driven and model-based accelerated Hamiltonian Monte Carlo method for Bayesian elliptic inverse problems

Abstract In this paper, we consider a Bayesian inverse problem modeled by elliptic partial differential equations (PDEs). Specifically, we propose a data-driven and model-based approach to accelerate the Hamiltonian Monte Carlo (HMC) method in solving large-scale Bayesian inverse problems. The key i...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Li, Sijing [verfasserIn]

Zhang, Cheng

Zhang, Zhiwen

Zhao, Hongkai

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Elliptic inverse problems

Bayesian inversion

Hamiltonian Monte Carlo (HMC) method

Proper orthogonal decomposition (POD)

Model reduction

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Statistics and computing - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1991, 33(2023), 4 vom: 16. Juni

Übergeordnetes Werk:

volume:33 ; year:2023 ; number:4 ; day:16 ; month:06

Links:

Volltext

DOI / URN:

10.1007/s11222-023-10262-y

Katalog-ID:

SPR051926237

Nicht das Richtige dabei?

Schreiben Sie uns!