Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells
Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of rec...
Ausführliche Beschreibung
Autor*in: |
Song, Yanwei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of translational medicine - London : BioMed Central, 2003, 21(2023), 1 vom: 16. Juni |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2023 ; number:1 ; day:16 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s12967-023-04260-x |
---|
Katalog-ID: |
SPR051931125 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR051931125 | ||
003 | DE-627 | ||
005 | 20230617064836.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230617s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12967-023-04260-x |2 doi | |
035 | |a (DE-627)SPR051931125 | ||
035 | |a (SPR)s12967-023-04260-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Song, Yanwei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression. | ||
650 | 4 | |a Radiation resistance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Radiotherapy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Tumor repopulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Colorectal cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prognostic indicator |7 (dpeaa)DE-He213 | |
700 | 1 | |a Deng, Zheng |4 aut | |
700 | 1 | |a Sun, Haoran |4 aut | |
700 | 1 | |a Zhao, Yucui |4 aut | |
700 | 1 | |a Zhao, Ruyi |4 aut | |
700 | 1 | |a Cheng, Jin |4 aut | |
700 | 1 | |a Huang, Qian |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of translational medicine |d London : BioMed Central, 2003 |g 21(2023), 1 vom: 16. Juni |w (DE-627)369084136 |w (DE-600)2118570-0 |x 1479-5876 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2023 |g number:1 |g day:16 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12967-023-04260-x |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2023 |e 1 |b 16 |c 06 |
author_variant |
y s ys z d zd h s hs y z yz r z rz j c jc q h qh |
---|---|
matchkey_str |
article:14795876:2023----::rdciguorppltotruhhgnpnleiefordaineit |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s12967-023-04260-x doi (DE-627)SPR051931125 (SPR)s12967-023-04260-x-e DE-627 ger DE-627 rakwb eng Song, Yanwei verfasserin aut Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression. Radiation resistance (dpeaa)DE-He213 Radiotherapy (dpeaa)DE-He213 Tumor repopulation (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 Prognostic indicator (dpeaa)DE-He213 Deng, Zheng aut Sun, Haoran aut Zhao, Yucui aut Zhao, Ruyi aut Cheng, Jin aut Huang, Qian aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 21(2023), 1 vom: 16. Juni (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:21 year:2023 number:1 day:16 month:06 https://dx.doi.org/10.1186/s12967-023-04260-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 16 06 |
spelling |
10.1186/s12967-023-04260-x doi (DE-627)SPR051931125 (SPR)s12967-023-04260-x-e DE-627 ger DE-627 rakwb eng Song, Yanwei verfasserin aut Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression. Radiation resistance (dpeaa)DE-He213 Radiotherapy (dpeaa)DE-He213 Tumor repopulation (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 Prognostic indicator (dpeaa)DE-He213 Deng, Zheng aut Sun, Haoran aut Zhao, Yucui aut Zhao, Ruyi aut Cheng, Jin aut Huang, Qian aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 21(2023), 1 vom: 16. Juni (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:21 year:2023 number:1 day:16 month:06 https://dx.doi.org/10.1186/s12967-023-04260-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 16 06 |
allfields_unstemmed |
10.1186/s12967-023-04260-x doi (DE-627)SPR051931125 (SPR)s12967-023-04260-x-e DE-627 ger DE-627 rakwb eng Song, Yanwei verfasserin aut Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression. Radiation resistance (dpeaa)DE-He213 Radiotherapy (dpeaa)DE-He213 Tumor repopulation (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 Prognostic indicator (dpeaa)DE-He213 Deng, Zheng aut Sun, Haoran aut Zhao, Yucui aut Zhao, Ruyi aut Cheng, Jin aut Huang, Qian aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 21(2023), 1 vom: 16. Juni (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:21 year:2023 number:1 day:16 month:06 https://dx.doi.org/10.1186/s12967-023-04260-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 16 06 |
allfieldsGer |
10.1186/s12967-023-04260-x doi (DE-627)SPR051931125 (SPR)s12967-023-04260-x-e DE-627 ger DE-627 rakwb eng Song, Yanwei verfasserin aut Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression. Radiation resistance (dpeaa)DE-He213 Radiotherapy (dpeaa)DE-He213 Tumor repopulation (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 Prognostic indicator (dpeaa)DE-He213 Deng, Zheng aut Sun, Haoran aut Zhao, Yucui aut Zhao, Ruyi aut Cheng, Jin aut Huang, Qian aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 21(2023), 1 vom: 16. Juni (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:21 year:2023 number:1 day:16 month:06 https://dx.doi.org/10.1186/s12967-023-04260-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 16 06 |
allfieldsSound |
10.1186/s12967-023-04260-x doi (DE-627)SPR051931125 (SPR)s12967-023-04260-x-e DE-627 ger DE-627 rakwb eng Song, Yanwei verfasserin aut Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression. Radiation resistance (dpeaa)DE-He213 Radiotherapy (dpeaa)DE-He213 Tumor repopulation (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 Prognostic indicator (dpeaa)DE-He213 Deng, Zheng aut Sun, Haoran aut Zhao, Yucui aut Zhao, Ruyi aut Cheng, Jin aut Huang, Qian aut Enthalten in Journal of translational medicine London : BioMed Central, 2003 21(2023), 1 vom: 16. Juni (DE-627)369084136 (DE-600)2118570-0 1479-5876 nnns volume:21 year:2023 number:1 day:16 month:06 https://dx.doi.org/10.1186/s12967-023-04260-x kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2023 1 16 06 |
language |
English |
source |
Enthalten in Journal of translational medicine 21(2023), 1 vom: 16. Juni volume:21 year:2023 number:1 day:16 month:06 |
sourceStr |
Enthalten in Journal of translational medicine 21(2023), 1 vom: 16. Juni volume:21 year:2023 number:1 day:16 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Radiation resistance Radiotherapy Tumor repopulation Colorectal cancer Prognostic indicator |
isfreeaccess_bool |
true |
container_title |
Journal of translational medicine |
authorswithroles_txt_mv |
Song, Yanwei @@aut@@ Deng, Zheng @@aut@@ Sun, Haoran @@aut@@ Zhao, Yucui @@aut@@ Zhao, Ruyi @@aut@@ Cheng, Jin @@aut@@ Huang, Qian @@aut@@ |
publishDateDaySort_date |
2023-06-16T00:00:00Z |
hierarchy_top_id |
369084136 |
id |
SPR051931125 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051931125</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230617064836.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230617s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12967-023-04260-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051931125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12967-023-04260-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Yanwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation resistance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiotherapy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tumor repopulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colorectal cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prognostic indicator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Zheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Haoran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yucui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Ruyi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Jin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Qian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of translational medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">21(2023), 1 vom: 16. Juni</subfield><subfield code="w">(DE-627)369084136</subfield><subfield code="w">(DE-600)2118570-0</subfield><subfield code="x">1479-5876</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:16</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12967-023-04260-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">16</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Song, Yanwei |
spellingShingle |
Song, Yanwei misc Radiation resistance misc Radiotherapy misc Tumor repopulation misc Colorectal cancer misc Prognostic indicator Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells |
authorStr |
Song, Yanwei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)369084136 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1479-5876 |
topic_title |
Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells Radiation resistance (dpeaa)DE-He213 Radiotherapy (dpeaa)DE-He213 Tumor repopulation (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 Prognostic indicator (dpeaa)DE-He213 |
topic |
misc Radiation resistance misc Radiotherapy misc Tumor repopulation misc Colorectal cancer misc Prognostic indicator |
topic_unstemmed |
misc Radiation resistance misc Radiotherapy misc Tumor repopulation misc Colorectal cancer misc Prognostic indicator |
topic_browse |
misc Radiation resistance misc Radiotherapy misc Tumor repopulation misc Colorectal cancer misc Prognostic indicator |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of translational medicine |
hierarchy_parent_id |
369084136 |
hierarchy_top_title |
Journal of translational medicine |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)369084136 (DE-600)2118570-0 |
title |
Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells |
ctrlnum |
(DE-627)SPR051931125 (SPR)s12967-023-04260-x-e |
title_full |
Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells |
author_sort |
Song, Yanwei |
journal |
Journal of translational medicine |
journalStr |
Journal of translational medicine |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Song, Yanwei Deng, Zheng Sun, Haoran Zhao, Yucui Zhao, Ruyi Cheng, Jin Huang, Qian |
container_volume |
21 |
format_se |
Elektronische Aufsätze |
author-letter |
Song, Yanwei |
doi_str_mv |
10.1186/s12967-023-04260-x |
title_sort |
predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells |
title_auth |
Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells |
abstract |
Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression. © The Author(s) 2023 |
abstractGer |
Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression. © The Author(s) 2023 |
abstract_unstemmed |
Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells |
url |
https://dx.doi.org/10.1186/s12967-023-04260-x |
remote_bool |
true |
author2 |
Deng, Zheng Sun, Haoran Zhao, Yucui Zhao, Ruyi Cheng, Jin Huang, Qian |
author2Str |
Deng, Zheng Sun, Haoran Zhao, Yucui Zhao, Ruyi Cheng, Jin Huang, Qian |
ppnlink |
369084136 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12967-023-04260-x |
up_date |
2024-07-04T00:29:33.971Z |
_version_ |
1803606267235663872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR051931125</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230617064836.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230617s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12967-023-04260-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR051931125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12967-023-04260-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Yanwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. Methods Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. Results Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. Conclusions Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiation resistance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiotherapy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tumor repopulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colorectal cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prognostic indicator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Zheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Haoran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yucui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Ruyi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Jin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Qian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of translational medicine</subfield><subfield code="d">London : BioMed Central, 2003</subfield><subfield code="g">21(2023), 1 vom: 16. Juni</subfield><subfield code="w">(DE-627)369084136</subfield><subfield code="w">(DE-600)2118570-0</subfield><subfield code="x">1479-5876</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:16</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12967-023-04260-x</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">16</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.401412 |