CT-based radiomics prediction of complete response after stereotactic body radiation therapy for patients with lung metastases

Purpose Stereotactic body radiotherapy (SBRT) is a key treatment modality for lung cancer patients. This study aims to develop a machine learning-based prediction model of complete response for lung oligometastatic cancer patients undergoing SBRT. Materials and methods CT images of 80 pulmonary olig...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Cilla, Savino [verfasserIn]

Pistilli, Domenico

Romano, Carmela

Macchia, Gabriella

Pierro, Antonio

Arcelli, Alessandra

Buwenge, Milly

Morganti, Alessio Giuseppe

Deodato, Francesco

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Radiomics

Machine learning

Lung cancer

SBRT

Treatment response

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Strahlentherapie und Onkologie - Berlin : Springer Medizin, 1997, 199(2023), 7 vom: 31. Mai, Seite 676-685

Übergeordnetes Werk:

volume:199 ; year:2023 ; number:7 ; day:31 ; month:05 ; pages:676-685

Links:

Volltext

DOI / URN:

10.1007/s00066-023-02086-6

Katalog-ID:

SPR051956837

Nicht das Richtige dabei?

Schreiben Sie uns!