Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite
Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the compariso...
Ausführliche Beschreibung
Autor*in: |
Shobier, Aida H. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: SN applied sciences - [Cham] : Springer International Publishing, 2019, 5(2023), 7 vom: 28. Juni |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2023 ; number:7 ; day:28 ; month:06 |
Links: |
---|
DOI / URN: |
10.1007/s42452-023-05397-6 |
---|
Katalog-ID: |
SPR052089126 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR052089126 | ||
003 | DE-627 | ||
005 | 20230629064736.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230629s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42452-023-05397-6 |2 doi | |
035 | |a (DE-627)SPR052089126 | ||
035 | |a (SPR)s42452-023-05397-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Shobier, Aida H. |e verfasserin |0 (orcid)0000-0003-0174-4231 |4 aut | |
245 | 1 | 0 | |a Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the comparison of the removal efficiency of Cr(VI) by the well-known biosorbent material, calcium alginate (CA) with the studied calcium alginate/Ulva fasciata (CA/UF) biocomposite beads. The characterization of the prepared beads was achieved using several techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) analyses were also employed which indicated a three-fold increase in the surface area, a mean pore diameter of 2.3-fold and a total pore volume of 14-fold for calcium alginate/Ulva fasciata composite compared to calcium alginate beads. The results of batch experiments demonstrated the fast complete removal of Cr(VI) by the CA/UF composite compared to the maximum removal (75%) by CA. The Dubinin–Radushkevich isotherm model reflected the physical pore volume filling of Cr(VI) rather than adsorption on the pore walls, giving an adsorption mean free energy (2.24 kJ/mol) for CA/UF greater than that of CA (0.13 kJ/mol). Furthermore, Brunauer–Emmett–Teller isotherm reflected the multilayer adsorption for CA and CA/UF. Flory–Huggins isotherm model showed the more spontaneous adsorption for CA/UF than CA, with negative Gibbs free energy ΔG0 values of − 4.76 and − 6.91 kJ/mol, respectively. Whereas, Temkin isotherm model showed a higher adsorption binding energy of Cr(VI) on CA/UF than CA beads. In this study, the Langmuir model of Cr(VI) adsorption on CA/UF beads was the least applied among all studied adsorption isotherm models, which also revealed the multilayer adsorption mechanism of Cr(VI) ions. The Intra-particle diffusion model was applied for CA/UF composite beads, and this application suggested that the intra-particle diffusion is a part of the rate-limiting steps. The regeneration study showed a decrease in the adsorption efficiency of CA/UF composite from 97.4 to 82.3% for three consecutive cycles. | ||
520 | |a Article Highlights Evaluation of the biosorption potential of calcium alginate and calcium alginate/Ulva fasciata composite beads.The surface morphology and elemental analysis of calcium alginate and calcium alginate/Ulva fasciata composite.Promising efficiency of calcium alginate/Ulva fasciata composite for removal of hexavalent chromium from aqueous solutions. | ||
650 | 4 | |a Alginate beads |7 (dpeaa)DE-He213 | |
650 | 4 | |a Alginate/algae beads |7 (dpeaa)DE-He213 | |
650 | 4 | |a Toxic heavy metal removal |7 (dpeaa)DE-He213 | |
650 | 4 | |a Adsorption isotherms |7 (dpeaa)DE-He213 | |
650 | 4 | |a Kinetic models |7 (dpeaa)DE-He213 | |
650 | 4 | |a Adsorbent regeneration |7 (dpeaa)DE-He213 | |
700 | 1 | |a El-Said, Ghada F. |0 (orcid)0000-0002-6358-5339 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t SN applied sciences |d [Cham] : Springer International Publishing, 2019 |g 5(2023), 7 vom: 28. Juni |w (DE-627)103761139X |w (DE-600)2947292-1 |x 2523-3971 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2023 |g number:7 |g day:28 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42452-023-05397-6 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2023 |e 7 |b 28 |c 06 |
author_variant |
a h s ah ahs g f e s gfe gfes |
---|---|
matchkey_str |
article:25233971:2023----::oprtvsuyfhefcieeoaohxvlncrmuvaacuagntadacu |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s42452-023-05397-6 doi (DE-627)SPR052089126 (SPR)s42452-023-05397-6-e DE-627 ger DE-627 rakwb eng Shobier, Aida H. verfasserin (orcid)0000-0003-0174-4231 aut Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the comparison of the removal efficiency of Cr(VI) by the well-known biosorbent material, calcium alginate (CA) with the studied calcium alginate/Ulva fasciata (CA/UF) biocomposite beads. The characterization of the prepared beads was achieved using several techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) analyses were also employed which indicated a three-fold increase in the surface area, a mean pore diameter of 2.3-fold and a total pore volume of 14-fold for calcium alginate/Ulva fasciata composite compared to calcium alginate beads. The results of batch experiments demonstrated the fast complete removal of Cr(VI) by the CA/UF composite compared to the maximum removal (75%) by CA. The Dubinin–Radushkevich isotherm model reflected the physical pore volume filling of Cr(VI) rather than adsorption on the pore walls, giving an adsorption mean free energy (2.24 kJ/mol) for CA/UF greater than that of CA (0.13 kJ/mol). Furthermore, Brunauer–Emmett–Teller isotherm reflected the multilayer adsorption for CA and CA/UF. Flory–Huggins isotherm model showed the more spontaneous adsorption for CA/UF than CA, with negative Gibbs free energy ΔG0 values of − 4.76 and − 6.91 kJ/mol, respectively. Whereas, Temkin isotherm model showed a higher adsorption binding energy of Cr(VI) on CA/UF than CA beads. In this study, the Langmuir model of Cr(VI) adsorption on CA/UF beads was the least applied among all studied adsorption isotherm models, which also revealed the multilayer adsorption mechanism of Cr(VI) ions. The Intra-particle diffusion model was applied for CA/UF composite beads, and this application suggested that the intra-particle diffusion is a part of the rate-limiting steps. The regeneration study showed a decrease in the adsorption efficiency of CA/UF composite from 97.4 to 82.3% for three consecutive cycles. Article Highlights Evaluation of the biosorption potential of calcium alginate and calcium alginate/Ulva fasciata composite beads.The surface morphology and elemental analysis of calcium alginate and calcium alginate/Ulva fasciata composite.Promising efficiency of calcium alginate/Ulva fasciata composite for removal of hexavalent chromium from aqueous solutions. Alginate beads (dpeaa)DE-He213 Alginate/algae beads (dpeaa)DE-He213 Toxic heavy metal removal (dpeaa)DE-He213 Adsorption isotherms (dpeaa)DE-He213 Kinetic models (dpeaa)DE-He213 Adsorbent regeneration (dpeaa)DE-He213 El-Said, Ghada F. (orcid)0000-0002-6358-5339 aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 7 vom: 28. Juni (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:7 day:28 month:06 https://dx.doi.org/10.1007/s42452-023-05397-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 7 28 06 |
spelling |
10.1007/s42452-023-05397-6 doi (DE-627)SPR052089126 (SPR)s42452-023-05397-6-e DE-627 ger DE-627 rakwb eng Shobier, Aida H. verfasserin (orcid)0000-0003-0174-4231 aut Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the comparison of the removal efficiency of Cr(VI) by the well-known biosorbent material, calcium alginate (CA) with the studied calcium alginate/Ulva fasciata (CA/UF) biocomposite beads. The characterization of the prepared beads was achieved using several techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) analyses were also employed which indicated a three-fold increase in the surface area, a mean pore diameter of 2.3-fold and a total pore volume of 14-fold for calcium alginate/Ulva fasciata composite compared to calcium alginate beads. The results of batch experiments demonstrated the fast complete removal of Cr(VI) by the CA/UF composite compared to the maximum removal (75%) by CA. The Dubinin–Radushkevich isotherm model reflected the physical pore volume filling of Cr(VI) rather than adsorption on the pore walls, giving an adsorption mean free energy (2.24 kJ/mol) for CA/UF greater than that of CA (0.13 kJ/mol). Furthermore, Brunauer–Emmett–Teller isotherm reflected the multilayer adsorption for CA and CA/UF. Flory–Huggins isotherm model showed the more spontaneous adsorption for CA/UF than CA, with negative Gibbs free energy ΔG0 values of − 4.76 and − 6.91 kJ/mol, respectively. Whereas, Temkin isotherm model showed a higher adsorption binding energy of Cr(VI) on CA/UF than CA beads. In this study, the Langmuir model of Cr(VI) adsorption on CA/UF beads was the least applied among all studied adsorption isotherm models, which also revealed the multilayer adsorption mechanism of Cr(VI) ions. The Intra-particle diffusion model was applied for CA/UF composite beads, and this application suggested that the intra-particle diffusion is a part of the rate-limiting steps. The regeneration study showed a decrease in the adsorption efficiency of CA/UF composite from 97.4 to 82.3% for three consecutive cycles. Article Highlights Evaluation of the biosorption potential of calcium alginate and calcium alginate/Ulva fasciata composite beads.The surface morphology and elemental analysis of calcium alginate and calcium alginate/Ulva fasciata composite.Promising efficiency of calcium alginate/Ulva fasciata composite for removal of hexavalent chromium from aqueous solutions. Alginate beads (dpeaa)DE-He213 Alginate/algae beads (dpeaa)DE-He213 Toxic heavy metal removal (dpeaa)DE-He213 Adsorption isotherms (dpeaa)DE-He213 Kinetic models (dpeaa)DE-He213 Adsorbent regeneration (dpeaa)DE-He213 El-Said, Ghada F. (orcid)0000-0002-6358-5339 aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 7 vom: 28. Juni (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:7 day:28 month:06 https://dx.doi.org/10.1007/s42452-023-05397-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 7 28 06 |
allfields_unstemmed |
10.1007/s42452-023-05397-6 doi (DE-627)SPR052089126 (SPR)s42452-023-05397-6-e DE-627 ger DE-627 rakwb eng Shobier, Aida H. verfasserin (orcid)0000-0003-0174-4231 aut Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the comparison of the removal efficiency of Cr(VI) by the well-known biosorbent material, calcium alginate (CA) with the studied calcium alginate/Ulva fasciata (CA/UF) biocomposite beads. The characterization of the prepared beads was achieved using several techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) analyses were also employed which indicated a three-fold increase in the surface area, a mean pore diameter of 2.3-fold and a total pore volume of 14-fold for calcium alginate/Ulva fasciata composite compared to calcium alginate beads. The results of batch experiments demonstrated the fast complete removal of Cr(VI) by the CA/UF composite compared to the maximum removal (75%) by CA. The Dubinin–Radushkevich isotherm model reflected the physical pore volume filling of Cr(VI) rather than adsorption on the pore walls, giving an adsorption mean free energy (2.24 kJ/mol) for CA/UF greater than that of CA (0.13 kJ/mol). Furthermore, Brunauer–Emmett–Teller isotherm reflected the multilayer adsorption for CA and CA/UF. Flory–Huggins isotherm model showed the more spontaneous adsorption for CA/UF than CA, with negative Gibbs free energy ΔG0 values of − 4.76 and − 6.91 kJ/mol, respectively. Whereas, Temkin isotherm model showed a higher adsorption binding energy of Cr(VI) on CA/UF than CA beads. In this study, the Langmuir model of Cr(VI) adsorption on CA/UF beads was the least applied among all studied adsorption isotherm models, which also revealed the multilayer adsorption mechanism of Cr(VI) ions. The Intra-particle diffusion model was applied for CA/UF composite beads, and this application suggested that the intra-particle diffusion is a part of the rate-limiting steps. The regeneration study showed a decrease in the adsorption efficiency of CA/UF composite from 97.4 to 82.3% for three consecutive cycles. Article Highlights Evaluation of the biosorption potential of calcium alginate and calcium alginate/Ulva fasciata composite beads.The surface morphology and elemental analysis of calcium alginate and calcium alginate/Ulva fasciata composite.Promising efficiency of calcium alginate/Ulva fasciata composite for removal of hexavalent chromium from aqueous solutions. Alginate beads (dpeaa)DE-He213 Alginate/algae beads (dpeaa)DE-He213 Toxic heavy metal removal (dpeaa)DE-He213 Adsorption isotherms (dpeaa)DE-He213 Kinetic models (dpeaa)DE-He213 Adsorbent regeneration (dpeaa)DE-He213 El-Said, Ghada F. (orcid)0000-0002-6358-5339 aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 7 vom: 28. Juni (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:7 day:28 month:06 https://dx.doi.org/10.1007/s42452-023-05397-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 7 28 06 |
allfieldsGer |
10.1007/s42452-023-05397-6 doi (DE-627)SPR052089126 (SPR)s42452-023-05397-6-e DE-627 ger DE-627 rakwb eng Shobier, Aida H. verfasserin (orcid)0000-0003-0174-4231 aut Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the comparison of the removal efficiency of Cr(VI) by the well-known biosorbent material, calcium alginate (CA) with the studied calcium alginate/Ulva fasciata (CA/UF) biocomposite beads. The characterization of the prepared beads was achieved using several techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) analyses were also employed which indicated a three-fold increase in the surface area, a mean pore diameter of 2.3-fold and a total pore volume of 14-fold for calcium alginate/Ulva fasciata composite compared to calcium alginate beads. The results of batch experiments demonstrated the fast complete removal of Cr(VI) by the CA/UF composite compared to the maximum removal (75%) by CA. The Dubinin–Radushkevich isotherm model reflected the physical pore volume filling of Cr(VI) rather than adsorption on the pore walls, giving an adsorption mean free energy (2.24 kJ/mol) for CA/UF greater than that of CA (0.13 kJ/mol). Furthermore, Brunauer–Emmett–Teller isotherm reflected the multilayer adsorption for CA and CA/UF. Flory–Huggins isotherm model showed the more spontaneous adsorption for CA/UF than CA, with negative Gibbs free energy ΔG0 values of − 4.76 and − 6.91 kJ/mol, respectively. Whereas, Temkin isotherm model showed a higher adsorption binding energy of Cr(VI) on CA/UF than CA beads. In this study, the Langmuir model of Cr(VI) adsorption on CA/UF beads was the least applied among all studied adsorption isotherm models, which also revealed the multilayer adsorption mechanism of Cr(VI) ions. The Intra-particle diffusion model was applied for CA/UF composite beads, and this application suggested that the intra-particle diffusion is a part of the rate-limiting steps. The regeneration study showed a decrease in the adsorption efficiency of CA/UF composite from 97.4 to 82.3% for three consecutive cycles. Article Highlights Evaluation of the biosorption potential of calcium alginate and calcium alginate/Ulva fasciata composite beads.The surface morphology and elemental analysis of calcium alginate and calcium alginate/Ulva fasciata composite.Promising efficiency of calcium alginate/Ulva fasciata composite for removal of hexavalent chromium from aqueous solutions. Alginate beads (dpeaa)DE-He213 Alginate/algae beads (dpeaa)DE-He213 Toxic heavy metal removal (dpeaa)DE-He213 Adsorption isotherms (dpeaa)DE-He213 Kinetic models (dpeaa)DE-He213 Adsorbent regeneration (dpeaa)DE-He213 El-Said, Ghada F. (orcid)0000-0002-6358-5339 aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 7 vom: 28. Juni (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:7 day:28 month:06 https://dx.doi.org/10.1007/s42452-023-05397-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 7 28 06 |
allfieldsSound |
10.1007/s42452-023-05397-6 doi (DE-627)SPR052089126 (SPR)s42452-023-05397-6-e DE-627 ger DE-627 rakwb eng Shobier, Aida H. verfasserin (orcid)0000-0003-0174-4231 aut Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the comparison of the removal efficiency of Cr(VI) by the well-known biosorbent material, calcium alginate (CA) with the studied calcium alginate/Ulva fasciata (CA/UF) biocomposite beads. The characterization of the prepared beads was achieved using several techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) analyses were also employed which indicated a three-fold increase in the surface area, a mean pore diameter of 2.3-fold and a total pore volume of 14-fold for calcium alginate/Ulva fasciata composite compared to calcium alginate beads. The results of batch experiments demonstrated the fast complete removal of Cr(VI) by the CA/UF composite compared to the maximum removal (75%) by CA. The Dubinin–Radushkevich isotherm model reflected the physical pore volume filling of Cr(VI) rather than adsorption on the pore walls, giving an adsorption mean free energy (2.24 kJ/mol) for CA/UF greater than that of CA (0.13 kJ/mol). Furthermore, Brunauer–Emmett–Teller isotherm reflected the multilayer adsorption for CA and CA/UF. Flory–Huggins isotherm model showed the more spontaneous adsorption for CA/UF than CA, with negative Gibbs free energy ΔG0 values of − 4.76 and − 6.91 kJ/mol, respectively. Whereas, Temkin isotherm model showed a higher adsorption binding energy of Cr(VI) on CA/UF than CA beads. In this study, the Langmuir model of Cr(VI) adsorption on CA/UF beads was the least applied among all studied adsorption isotherm models, which also revealed the multilayer adsorption mechanism of Cr(VI) ions. The Intra-particle diffusion model was applied for CA/UF composite beads, and this application suggested that the intra-particle diffusion is a part of the rate-limiting steps. The regeneration study showed a decrease in the adsorption efficiency of CA/UF composite from 97.4 to 82.3% for three consecutive cycles. Article Highlights Evaluation of the biosorption potential of calcium alginate and calcium alginate/Ulva fasciata composite beads.The surface morphology and elemental analysis of calcium alginate and calcium alginate/Ulva fasciata composite.Promising efficiency of calcium alginate/Ulva fasciata composite for removal of hexavalent chromium from aqueous solutions. Alginate beads (dpeaa)DE-He213 Alginate/algae beads (dpeaa)DE-He213 Toxic heavy metal removal (dpeaa)DE-He213 Adsorption isotherms (dpeaa)DE-He213 Kinetic models (dpeaa)DE-He213 Adsorbent regeneration (dpeaa)DE-He213 El-Said, Ghada F. (orcid)0000-0002-6358-5339 aut Enthalten in SN applied sciences [Cham] : Springer International Publishing, 2019 5(2023), 7 vom: 28. Juni (DE-627)103761139X (DE-600)2947292-1 2523-3971 nnns volume:5 year:2023 number:7 day:28 month:06 https://dx.doi.org/10.1007/s42452-023-05397-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 7 28 06 |
language |
English |
source |
Enthalten in SN applied sciences 5(2023), 7 vom: 28. Juni volume:5 year:2023 number:7 day:28 month:06 |
sourceStr |
Enthalten in SN applied sciences 5(2023), 7 vom: 28. Juni volume:5 year:2023 number:7 day:28 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Alginate beads Alginate/algae beads Toxic heavy metal removal Adsorption isotherms Kinetic models Adsorbent regeneration |
isfreeaccess_bool |
true |
container_title |
SN applied sciences |
authorswithroles_txt_mv |
Shobier, Aida H. @@aut@@ El-Said, Ghada F. @@aut@@ |
publishDateDaySort_date |
2023-06-28T00:00:00Z |
hierarchy_top_id |
103761139X |
id |
SPR052089126 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052089126</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230629064736.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230629s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-023-05397-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052089126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42452-023-05397-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shobier, Aida H.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0174-4231</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the comparison of the removal efficiency of Cr(VI) by the well-known biosorbent material, calcium alginate (CA) with the studied calcium alginate/Ulva fasciata (CA/UF) biocomposite beads. The characterization of the prepared beads was achieved using several techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) analyses were also employed which indicated a three-fold increase in the surface area, a mean pore diameter of 2.3-fold and a total pore volume of 14-fold for calcium alginate/Ulva fasciata composite compared to calcium alginate beads. The results of batch experiments demonstrated the fast complete removal of Cr(VI) by the CA/UF composite compared to the maximum removal (75%) by CA. The Dubinin–Radushkevich isotherm model reflected the physical pore volume filling of Cr(VI) rather than adsorption on the pore walls, giving an adsorption mean free energy (2.24 kJ/mol) for CA/UF greater than that of CA (0.13 kJ/mol). Furthermore, Brunauer–Emmett–Teller isotherm reflected the multilayer adsorption for CA and CA/UF. Flory–Huggins isotherm model showed the more spontaneous adsorption for CA/UF than CA, with negative Gibbs free energy ΔG0 values of − 4.76 and − 6.91 kJ/mol, respectively. Whereas, Temkin isotherm model showed a higher adsorption binding energy of Cr(VI) on CA/UF than CA beads. In this study, the Langmuir model of Cr(VI) adsorption on CA/UF beads was the least applied among all studied adsorption isotherm models, which also revealed the multilayer adsorption mechanism of Cr(VI) ions. The Intra-particle diffusion model was applied for CA/UF composite beads, and this application suggested that the intra-particle diffusion is a part of the rate-limiting steps. The regeneration study showed a decrease in the adsorption efficiency of CA/UF composite from 97.4 to 82.3% for three consecutive cycles.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Article Highlights Evaluation of the biosorption potential of calcium alginate and calcium alginate/Ulva fasciata composite beads.The surface morphology and elemental analysis of calcium alginate and calcium alginate/Ulva fasciata composite.Promising efficiency of calcium alginate/Ulva fasciata composite for removal of hexavalent chromium from aqueous solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alginate beads</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alginate/algae beads</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toxic heavy metal removal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adsorption isotherms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adsorbent regeneration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">El-Said, Ghada F.</subfield><subfield code="0">(orcid)0000-0002-6358-5339</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SN applied sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 2019</subfield><subfield code="g">5(2023), 7 vom: 28. Juni</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="w">(DE-600)2947292-1</subfield><subfield code="x">2523-3971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7</subfield><subfield code="g">day:28</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42452-023-05397-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">7</subfield><subfield code="b">28</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Shobier, Aida H. |
spellingShingle |
Shobier, Aida H. misc Alginate beads misc Alginate/algae beads misc Toxic heavy metal removal misc Adsorption isotherms misc Kinetic models misc Adsorbent regeneration Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite |
authorStr |
Shobier, Aida H. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)103761139X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2523-3971 |
topic_title |
Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite Alginate beads (dpeaa)DE-He213 Alginate/algae beads (dpeaa)DE-He213 Toxic heavy metal removal (dpeaa)DE-He213 Adsorption isotherms (dpeaa)DE-He213 Kinetic models (dpeaa)DE-He213 Adsorbent regeneration (dpeaa)DE-He213 |
topic |
misc Alginate beads misc Alginate/algae beads misc Toxic heavy metal removal misc Adsorption isotherms misc Kinetic models misc Adsorbent regeneration |
topic_unstemmed |
misc Alginate beads misc Alginate/algae beads misc Toxic heavy metal removal misc Adsorption isotherms misc Kinetic models misc Adsorbent regeneration |
topic_browse |
misc Alginate beads misc Alginate/algae beads misc Toxic heavy metal removal misc Adsorption isotherms misc Kinetic models misc Adsorbent regeneration |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
SN applied sciences |
hierarchy_parent_id |
103761139X |
hierarchy_top_title |
SN applied sciences |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)103761139X (DE-600)2947292-1 |
title |
Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite |
ctrlnum |
(DE-627)SPR052089126 (SPR)s42452-023-05397-6-e |
title_full |
Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite |
author_sort |
Shobier, Aida H. |
journal |
SN applied sciences |
journalStr |
SN applied sciences |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Shobier, Aida H. El-Said, Ghada F. |
container_volume |
5 |
format_se |
Elektronische Aufsätze |
author-letter |
Shobier, Aida H. |
doi_str_mv |
10.1007/s42452-023-05397-6 |
normlink |
(ORCID)0000-0003-0174-4231 (ORCID)0000-0002-6358-5339 |
normlink_prefix_str_mv |
(orcid)0000-0003-0174-4231 (orcid)0000-0002-6358-5339 |
title_sort |
comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/ulva fasciata composite |
title_auth |
Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite |
abstract |
Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the comparison of the removal efficiency of Cr(VI) by the well-known biosorbent material, calcium alginate (CA) with the studied calcium alginate/Ulva fasciata (CA/UF) biocomposite beads. The characterization of the prepared beads was achieved using several techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) analyses were also employed which indicated a three-fold increase in the surface area, a mean pore diameter of 2.3-fold and a total pore volume of 14-fold for calcium alginate/Ulva fasciata composite compared to calcium alginate beads. The results of batch experiments demonstrated the fast complete removal of Cr(VI) by the CA/UF composite compared to the maximum removal (75%) by CA. The Dubinin–Radushkevich isotherm model reflected the physical pore volume filling of Cr(VI) rather than adsorption on the pore walls, giving an adsorption mean free energy (2.24 kJ/mol) for CA/UF greater than that of CA (0.13 kJ/mol). Furthermore, Brunauer–Emmett–Teller isotherm reflected the multilayer adsorption for CA and CA/UF. Flory–Huggins isotherm model showed the more spontaneous adsorption for CA/UF than CA, with negative Gibbs free energy ΔG0 values of − 4.76 and − 6.91 kJ/mol, respectively. Whereas, Temkin isotherm model showed a higher adsorption binding energy of Cr(VI) on CA/UF than CA beads. In this study, the Langmuir model of Cr(VI) adsorption on CA/UF beads was the least applied among all studied adsorption isotherm models, which also revealed the multilayer adsorption mechanism of Cr(VI) ions. The Intra-particle diffusion model was applied for CA/UF composite beads, and this application suggested that the intra-particle diffusion is a part of the rate-limiting steps. The regeneration study showed a decrease in the adsorption efficiency of CA/UF composite from 97.4 to 82.3% for three consecutive cycles. Article Highlights Evaluation of the biosorption potential of calcium alginate and calcium alginate/Ulva fasciata composite beads.The surface morphology and elemental analysis of calcium alginate and calcium alginate/Ulva fasciata composite.Promising efficiency of calcium alginate/Ulva fasciata composite for removal of hexavalent chromium from aqueous solutions. © The Author(s) 2023 |
abstractGer |
Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the comparison of the removal efficiency of Cr(VI) by the well-known biosorbent material, calcium alginate (CA) with the studied calcium alginate/Ulva fasciata (CA/UF) biocomposite beads. The characterization of the prepared beads was achieved using several techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) analyses were also employed which indicated a three-fold increase in the surface area, a mean pore diameter of 2.3-fold and a total pore volume of 14-fold for calcium alginate/Ulva fasciata composite compared to calcium alginate beads. The results of batch experiments demonstrated the fast complete removal of Cr(VI) by the CA/UF composite compared to the maximum removal (75%) by CA. The Dubinin–Radushkevich isotherm model reflected the physical pore volume filling of Cr(VI) rather than adsorption on the pore walls, giving an adsorption mean free energy (2.24 kJ/mol) for CA/UF greater than that of CA (0.13 kJ/mol). Furthermore, Brunauer–Emmett–Teller isotherm reflected the multilayer adsorption for CA and CA/UF. Flory–Huggins isotherm model showed the more spontaneous adsorption for CA/UF than CA, with negative Gibbs free energy ΔG0 values of − 4.76 and − 6.91 kJ/mol, respectively. Whereas, Temkin isotherm model showed a higher adsorption binding energy of Cr(VI) on CA/UF than CA beads. In this study, the Langmuir model of Cr(VI) adsorption on CA/UF beads was the least applied among all studied adsorption isotherm models, which also revealed the multilayer adsorption mechanism of Cr(VI) ions. The Intra-particle diffusion model was applied for CA/UF composite beads, and this application suggested that the intra-particle diffusion is a part of the rate-limiting steps. The regeneration study showed a decrease in the adsorption efficiency of CA/UF composite from 97.4 to 82.3% for three consecutive cycles. Article Highlights Evaluation of the biosorption potential of calcium alginate and calcium alginate/Ulva fasciata composite beads.The surface morphology and elemental analysis of calcium alginate and calcium alginate/Ulva fasciata composite.Promising efficiency of calcium alginate/Ulva fasciata composite for removal of hexavalent chromium from aqueous solutions. © The Author(s) 2023 |
abstract_unstemmed |
Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the comparison of the removal efficiency of Cr(VI) by the well-known biosorbent material, calcium alginate (CA) with the studied calcium alginate/Ulva fasciata (CA/UF) biocomposite beads. The characterization of the prepared beads was achieved using several techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) analyses were also employed which indicated a three-fold increase in the surface area, a mean pore diameter of 2.3-fold and a total pore volume of 14-fold for calcium alginate/Ulva fasciata composite compared to calcium alginate beads. The results of batch experiments demonstrated the fast complete removal of Cr(VI) by the CA/UF composite compared to the maximum removal (75%) by CA. The Dubinin–Radushkevich isotherm model reflected the physical pore volume filling of Cr(VI) rather than adsorption on the pore walls, giving an adsorption mean free energy (2.24 kJ/mol) for CA/UF greater than that of CA (0.13 kJ/mol). Furthermore, Brunauer–Emmett–Teller isotherm reflected the multilayer adsorption for CA and CA/UF. Flory–Huggins isotherm model showed the more spontaneous adsorption for CA/UF than CA, with negative Gibbs free energy ΔG0 values of − 4.76 and − 6.91 kJ/mol, respectively. Whereas, Temkin isotherm model showed a higher adsorption binding energy of Cr(VI) on CA/UF than CA beads. In this study, the Langmuir model of Cr(VI) adsorption on CA/UF beads was the least applied among all studied adsorption isotherm models, which also revealed the multilayer adsorption mechanism of Cr(VI) ions. The Intra-particle diffusion model was applied for CA/UF composite beads, and this application suggested that the intra-particle diffusion is a part of the rate-limiting steps. The regeneration study showed a decrease in the adsorption efficiency of CA/UF composite from 97.4 to 82.3% for three consecutive cycles. Article Highlights Evaluation of the biosorption potential of calcium alginate and calcium alginate/Ulva fasciata composite beads.The surface morphology and elemental analysis of calcium alginate and calcium alginate/Ulva fasciata composite.Promising efficiency of calcium alginate/Ulva fasciata composite for removal of hexavalent chromium from aqueous solutions. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
7 |
title_short |
Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite |
url |
https://dx.doi.org/10.1007/s42452-023-05397-6 |
remote_bool |
true |
author2 |
El-Said, Ghada F. |
author2Str |
El-Said, Ghada F. |
ppnlink |
103761139X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42452-023-05397-6 |
up_date |
2024-07-04T01:12:57.873Z |
_version_ |
1803608997626904576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052089126</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230629064736.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230629s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42452-023-05397-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052089126</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42452-023-05397-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shobier, Aida H.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0174-4231</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparative study of the effective removal of hexavalent chromium via calcium alginate and calcium alginate/Ulva fasciata composite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The present study revealed for the first time the removal of hexavalent chromium Cr(VI) with a high efficiency using an eco-friendly composite beads of alginate with the green alga Ulva fasciata compared to calcium alginate beads. This conclusion was reached in this study from the comparison of the removal efficiency of Cr(VI) by the well-known biosorbent material, calcium alginate (CA) with the studied calcium alginate/Ulva fasciata (CA/UF) biocomposite beads. The characterization of the prepared beads was achieved using several techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray (EDAX). The Brunauer, Emmett, Teller (BET) and Barrett, Joyner, Halenda (BJH) analyses were also employed which indicated a three-fold increase in the surface area, a mean pore diameter of 2.3-fold and a total pore volume of 14-fold for calcium alginate/Ulva fasciata composite compared to calcium alginate beads. The results of batch experiments demonstrated the fast complete removal of Cr(VI) by the CA/UF composite compared to the maximum removal (75%) by CA. The Dubinin–Radushkevich isotherm model reflected the physical pore volume filling of Cr(VI) rather than adsorption on the pore walls, giving an adsorption mean free energy (2.24 kJ/mol) for CA/UF greater than that of CA (0.13 kJ/mol). Furthermore, Brunauer–Emmett–Teller isotherm reflected the multilayer adsorption for CA and CA/UF. Flory–Huggins isotherm model showed the more spontaneous adsorption for CA/UF than CA, with negative Gibbs free energy ΔG0 values of − 4.76 and − 6.91 kJ/mol, respectively. Whereas, Temkin isotherm model showed a higher adsorption binding energy of Cr(VI) on CA/UF than CA beads. In this study, the Langmuir model of Cr(VI) adsorption on CA/UF beads was the least applied among all studied adsorption isotherm models, which also revealed the multilayer adsorption mechanism of Cr(VI) ions. The Intra-particle diffusion model was applied for CA/UF composite beads, and this application suggested that the intra-particle diffusion is a part of the rate-limiting steps. The regeneration study showed a decrease in the adsorption efficiency of CA/UF composite from 97.4 to 82.3% for three consecutive cycles.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Article Highlights Evaluation of the biosorption potential of calcium alginate and calcium alginate/Ulva fasciata composite beads.The surface morphology and elemental analysis of calcium alginate and calcium alginate/Ulva fasciata composite.Promising efficiency of calcium alginate/Ulva fasciata composite for removal of hexavalent chromium from aqueous solutions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alginate beads</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alginate/algae beads</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Toxic heavy metal removal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adsorption isotherms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic models</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adsorbent regeneration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">El-Said, Ghada F.</subfield><subfield code="0">(orcid)0000-0002-6358-5339</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">SN applied sciences</subfield><subfield code="d">[Cham] : Springer International Publishing, 2019</subfield><subfield code="g">5(2023), 7 vom: 28. Juni</subfield><subfield code="w">(DE-627)103761139X</subfield><subfield code="w">(DE-600)2947292-1</subfield><subfield code="x">2523-3971</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:7</subfield><subfield code="g">day:28</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42452-023-05397-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">7</subfield><subfield code="b">28</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.399441 |