Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication
Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer...
Ausführliche Beschreibung
Autor*in: |
Tayade, Payal [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
D2D (Device to device) communication LTE-A (long term evolution-advanced |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Optical and quantum electronics - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969, 55(2023), 9 vom: 30. Juni |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2023 ; number:9 ; day:30 ; month:06 |
Links: |
---|
DOI / URN: |
10.1007/s11082-023-05018-x |
---|
Katalog-ID: |
SPR052107302 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR052107302 | ||
003 | DE-627 | ||
005 | 20230723064710.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230701s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11082-023-05018-x |2 doi | |
035 | |a (DE-627)SPR052107302 | ||
035 | |a (SPR)s11082-023-05018-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Tayade, Payal |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer data securely between various user’s, due to its rudimentary concept of Quantum Key Distribution (QKD). There are two major concerns in the communication. The first concern is for the data transmission which is frequently carried out through some entity of the cellular network such as Home subscriber Server (HSS) or Gateway (GW), and Evolved Node B(eNB), which is inadvisable to preserve confidentiality of the message. The second concern is, device-to-device (D2D) communication via prose function which is relatively a threat affected path that can be easily affected by the man in the middle (MitM) attack, message drop attack, replay attack, denial of service (DoS) attack, impersonation attack.. To mitigate these threats, this research work is proposing a Secure Authentication Protocol (SAP). The proposed SAP is categorized into 5 phases namely framework of network, enrolment phase, D2D discovery phase, key production—authentication phase and content conveyance phase. Framework of network phase generates function parameters. Enrolment phase registers all user equipment (UE) for verification and also generate an appropriate user application code for respective UE. In this phase, HSS also manages a database that contains detail about all the enrolled. D2D discovery phase allows the UE to discover the neighbors under that proximity area. During the authentication phase, public as well as private secret keys are generated using Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie-Hellman (ECDH) algorithm. In addition to that, this phase implements hash based message authentication code (HMAC) to create application associated keys. In the last phase of content conveyance, most important step is to share Shared Secret Key (SSK) as it mainly responsible while decrypting original message. To make this transmission very secure, quantum channel is used. Quantum Cryptography plays a vital role in this phase for providing security to whole transmission process at high level. Now a days, advanced optical technologies are also using quantum cryptography to establish secured communication. The performance of the proposed SAP is evaluated and compared with the existing protocols by using multiple evaluation criteria such as cost of operation, computational overhead, storage overhead and energy consumption. This article also provides insights into various security threats such as MitM, replay attack, DoS attack, impersonation attack, known key attack due to use of ECC and ECDH. Also, SAP provides a strong pillar against eavesdropping attack due to quantum cryptography. Also, Bennett and Gilles Brassard (BB84) protocol linked with quantum electronics and physics, place a significant role for creation of quantum channel over classical channel, which took security of SAP at next level. | ||
650 | 4 | |a D2D (Device to device) communication |7 (dpeaa)DE-He213 | |
650 | 4 | |a LTE-A (long term evolution-advanced |7 (dpeaa)DE-He213 | |
650 | 4 | |a Advanced antenna/optical system |7 (dpeaa)DE-He213 | |
650 | 4 | |a Quantum electronics/physics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Quantum cryptography |7 (dpeaa)DE-He213 | |
650 | 4 | |a 4G/5G communication |7 (dpeaa)DE-He213 | |
700 | 1 | |a Vijaya Kumar, P. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optical and quantum electronics |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 |g 55(2023), 9 vom: 30. Juni |w (DE-627)312693869 |w (DE-600)2000642-1 |x 1572-817X |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2023 |g number:9 |g day:30 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11082-023-05018-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 55 |j 2023 |e 9 |b 30 |c 06 |
author_variant |
p t pt k p v kp kpv |
---|---|
matchkey_str |
article:1572817X:2023----::unubsdlxbeeueuhniainrtclafreieo |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11082-023-05018-x doi (DE-627)SPR052107302 (SPR)s11082-023-05018-x-e DE-627 ger DE-627 rakwb eng Tayade, Payal verfasserin aut Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer data securely between various user’s, due to its rudimentary concept of Quantum Key Distribution (QKD). There are two major concerns in the communication. The first concern is for the data transmission which is frequently carried out through some entity of the cellular network such as Home subscriber Server (HSS) or Gateway (GW), and Evolved Node B(eNB), which is inadvisable to preserve confidentiality of the message. The second concern is, device-to-device (D2D) communication via prose function which is relatively a threat affected path that can be easily affected by the man in the middle (MitM) attack, message drop attack, replay attack, denial of service (DoS) attack, impersonation attack.. To mitigate these threats, this research work is proposing a Secure Authentication Protocol (SAP). The proposed SAP is categorized into 5 phases namely framework of network, enrolment phase, D2D discovery phase, key production—authentication phase and content conveyance phase. Framework of network phase generates function parameters. Enrolment phase registers all user equipment (UE) for verification and also generate an appropriate user application code for respective UE. In this phase, HSS also manages a database that contains detail about all the enrolled. D2D discovery phase allows the UE to discover the neighbors under that proximity area. During the authentication phase, public as well as private secret keys are generated using Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie-Hellman (ECDH) algorithm. In addition to that, this phase implements hash based message authentication code (HMAC) to create application associated keys. In the last phase of content conveyance, most important step is to share Shared Secret Key (SSK) as it mainly responsible while decrypting original message. To make this transmission very secure, quantum channel is used. Quantum Cryptography plays a vital role in this phase for providing security to whole transmission process at high level. Now a days, advanced optical technologies are also using quantum cryptography to establish secured communication. The performance of the proposed SAP is evaluated and compared with the existing protocols by using multiple evaluation criteria such as cost of operation, computational overhead, storage overhead and energy consumption. This article also provides insights into various security threats such as MitM, replay attack, DoS attack, impersonation attack, known key attack due to use of ECC and ECDH. Also, SAP provides a strong pillar against eavesdropping attack due to quantum cryptography. Also, Bennett and Gilles Brassard (BB84) protocol linked with quantum electronics and physics, place a significant role for creation of quantum channel over classical channel, which took security of SAP at next level. D2D (Device to device) communication (dpeaa)DE-He213 LTE-A (long term evolution-advanced (dpeaa)DE-He213 Advanced antenna/optical system (dpeaa)DE-He213 Quantum electronics/physics (dpeaa)DE-He213 Quantum cryptography (dpeaa)DE-He213 4G/5G communication (dpeaa)DE-He213 Vijaya Kumar, P. aut Enthalten in Optical and quantum electronics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 55(2023), 9 vom: 30. Juni (DE-627)312693869 (DE-600)2000642-1 1572-817X nnns volume:55 year:2023 number:9 day:30 month:06 https://dx.doi.org/10.1007/s11082-023-05018-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2023 9 30 06 |
spelling |
10.1007/s11082-023-05018-x doi (DE-627)SPR052107302 (SPR)s11082-023-05018-x-e DE-627 ger DE-627 rakwb eng Tayade, Payal verfasserin aut Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer data securely between various user’s, due to its rudimentary concept of Quantum Key Distribution (QKD). There are two major concerns in the communication. The first concern is for the data transmission which is frequently carried out through some entity of the cellular network such as Home subscriber Server (HSS) or Gateway (GW), and Evolved Node B(eNB), which is inadvisable to preserve confidentiality of the message. The second concern is, device-to-device (D2D) communication via prose function which is relatively a threat affected path that can be easily affected by the man in the middle (MitM) attack, message drop attack, replay attack, denial of service (DoS) attack, impersonation attack.. To mitigate these threats, this research work is proposing a Secure Authentication Protocol (SAP). The proposed SAP is categorized into 5 phases namely framework of network, enrolment phase, D2D discovery phase, key production—authentication phase and content conveyance phase. Framework of network phase generates function parameters. Enrolment phase registers all user equipment (UE) for verification and also generate an appropriate user application code for respective UE. In this phase, HSS also manages a database that contains detail about all the enrolled. D2D discovery phase allows the UE to discover the neighbors under that proximity area. During the authentication phase, public as well as private secret keys are generated using Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie-Hellman (ECDH) algorithm. In addition to that, this phase implements hash based message authentication code (HMAC) to create application associated keys. In the last phase of content conveyance, most important step is to share Shared Secret Key (SSK) as it mainly responsible while decrypting original message. To make this transmission very secure, quantum channel is used. Quantum Cryptography plays a vital role in this phase for providing security to whole transmission process at high level. Now a days, advanced optical technologies are also using quantum cryptography to establish secured communication. The performance of the proposed SAP is evaluated and compared with the existing protocols by using multiple evaluation criteria such as cost of operation, computational overhead, storage overhead and energy consumption. This article also provides insights into various security threats such as MitM, replay attack, DoS attack, impersonation attack, known key attack due to use of ECC and ECDH. Also, SAP provides a strong pillar against eavesdropping attack due to quantum cryptography. Also, Bennett and Gilles Brassard (BB84) protocol linked with quantum electronics and physics, place a significant role for creation of quantum channel over classical channel, which took security of SAP at next level. D2D (Device to device) communication (dpeaa)DE-He213 LTE-A (long term evolution-advanced (dpeaa)DE-He213 Advanced antenna/optical system (dpeaa)DE-He213 Quantum electronics/physics (dpeaa)DE-He213 Quantum cryptography (dpeaa)DE-He213 4G/5G communication (dpeaa)DE-He213 Vijaya Kumar, P. aut Enthalten in Optical and quantum electronics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 55(2023), 9 vom: 30. Juni (DE-627)312693869 (DE-600)2000642-1 1572-817X nnns volume:55 year:2023 number:9 day:30 month:06 https://dx.doi.org/10.1007/s11082-023-05018-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2023 9 30 06 |
allfields_unstemmed |
10.1007/s11082-023-05018-x doi (DE-627)SPR052107302 (SPR)s11082-023-05018-x-e DE-627 ger DE-627 rakwb eng Tayade, Payal verfasserin aut Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer data securely between various user’s, due to its rudimentary concept of Quantum Key Distribution (QKD). There are two major concerns in the communication. The first concern is for the data transmission which is frequently carried out through some entity of the cellular network such as Home subscriber Server (HSS) or Gateway (GW), and Evolved Node B(eNB), which is inadvisable to preserve confidentiality of the message. The second concern is, device-to-device (D2D) communication via prose function which is relatively a threat affected path that can be easily affected by the man in the middle (MitM) attack, message drop attack, replay attack, denial of service (DoS) attack, impersonation attack.. To mitigate these threats, this research work is proposing a Secure Authentication Protocol (SAP). The proposed SAP is categorized into 5 phases namely framework of network, enrolment phase, D2D discovery phase, key production—authentication phase and content conveyance phase. Framework of network phase generates function parameters. Enrolment phase registers all user equipment (UE) for verification and also generate an appropriate user application code for respective UE. In this phase, HSS also manages a database that contains detail about all the enrolled. D2D discovery phase allows the UE to discover the neighbors under that proximity area. During the authentication phase, public as well as private secret keys are generated using Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie-Hellman (ECDH) algorithm. In addition to that, this phase implements hash based message authentication code (HMAC) to create application associated keys. In the last phase of content conveyance, most important step is to share Shared Secret Key (SSK) as it mainly responsible while decrypting original message. To make this transmission very secure, quantum channel is used. Quantum Cryptography plays a vital role in this phase for providing security to whole transmission process at high level. Now a days, advanced optical technologies are also using quantum cryptography to establish secured communication. The performance of the proposed SAP is evaluated and compared with the existing protocols by using multiple evaluation criteria such as cost of operation, computational overhead, storage overhead and energy consumption. This article also provides insights into various security threats such as MitM, replay attack, DoS attack, impersonation attack, known key attack due to use of ECC and ECDH. Also, SAP provides a strong pillar against eavesdropping attack due to quantum cryptography. Also, Bennett and Gilles Brassard (BB84) protocol linked with quantum electronics and physics, place a significant role for creation of quantum channel over classical channel, which took security of SAP at next level. D2D (Device to device) communication (dpeaa)DE-He213 LTE-A (long term evolution-advanced (dpeaa)DE-He213 Advanced antenna/optical system (dpeaa)DE-He213 Quantum electronics/physics (dpeaa)DE-He213 Quantum cryptography (dpeaa)DE-He213 4G/5G communication (dpeaa)DE-He213 Vijaya Kumar, P. aut Enthalten in Optical and quantum electronics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 55(2023), 9 vom: 30. Juni (DE-627)312693869 (DE-600)2000642-1 1572-817X nnns volume:55 year:2023 number:9 day:30 month:06 https://dx.doi.org/10.1007/s11082-023-05018-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2023 9 30 06 |
allfieldsGer |
10.1007/s11082-023-05018-x doi (DE-627)SPR052107302 (SPR)s11082-023-05018-x-e DE-627 ger DE-627 rakwb eng Tayade, Payal verfasserin aut Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer data securely between various user’s, due to its rudimentary concept of Quantum Key Distribution (QKD). There are two major concerns in the communication. The first concern is for the data transmission which is frequently carried out through some entity of the cellular network such as Home subscriber Server (HSS) or Gateway (GW), and Evolved Node B(eNB), which is inadvisable to preserve confidentiality of the message. The second concern is, device-to-device (D2D) communication via prose function which is relatively a threat affected path that can be easily affected by the man in the middle (MitM) attack, message drop attack, replay attack, denial of service (DoS) attack, impersonation attack.. To mitigate these threats, this research work is proposing a Secure Authentication Protocol (SAP). The proposed SAP is categorized into 5 phases namely framework of network, enrolment phase, D2D discovery phase, key production—authentication phase and content conveyance phase. Framework of network phase generates function parameters. Enrolment phase registers all user equipment (UE) for verification and also generate an appropriate user application code for respective UE. In this phase, HSS also manages a database that contains detail about all the enrolled. D2D discovery phase allows the UE to discover the neighbors under that proximity area. During the authentication phase, public as well as private secret keys are generated using Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie-Hellman (ECDH) algorithm. In addition to that, this phase implements hash based message authentication code (HMAC) to create application associated keys. In the last phase of content conveyance, most important step is to share Shared Secret Key (SSK) as it mainly responsible while decrypting original message. To make this transmission very secure, quantum channel is used. Quantum Cryptography plays a vital role in this phase for providing security to whole transmission process at high level. Now a days, advanced optical technologies are also using quantum cryptography to establish secured communication. The performance of the proposed SAP is evaluated and compared with the existing protocols by using multiple evaluation criteria such as cost of operation, computational overhead, storage overhead and energy consumption. This article also provides insights into various security threats such as MitM, replay attack, DoS attack, impersonation attack, known key attack due to use of ECC and ECDH. Also, SAP provides a strong pillar against eavesdropping attack due to quantum cryptography. Also, Bennett and Gilles Brassard (BB84) protocol linked with quantum electronics and physics, place a significant role for creation of quantum channel over classical channel, which took security of SAP at next level. D2D (Device to device) communication (dpeaa)DE-He213 LTE-A (long term evolution-advanced (dpeaa)DE-He213 Advanced antenna/optical system (dpeaa)DE-He213 Quantum electronics/physics (dpeaa)DE-He213 Quantum cryptography (dpeaa)DE-He213 4G/5G communication (dpeaa)DE-He213 Vijaya Kumar, P. aut Enthalten in Optical and quantum electronics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 55(2023), 9 vom: 30. Juni (DE-627)312693869 (DE-600)2000642-1 1572-817X nnns volume:55 year:2023 number:9 day:30 month:06 https://dx.doi.org/10.1007/s11082-023-05018-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2023 9 30 06 |
allfieldsSound |
10.1007/s11082-023-05018-x doi (DE-627)SPR052107302 (SPR)s11082-023-05018-x-e DE-627 ger DE-627 rakwb eng Tayade, Payal verfasserin aut Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer data securely between various user’s, due to its rudimentary concept of Quantum Key Distribution (QKD). There are two major concerns in the communication. The first concern is for the data transmission which is frequently carried out through some entity of the cellular network such as Home subscriber Server (HSS) or Gateway (GW), and Evolved Node B(eNB), which is inadvisable to preserve confidentiality of the message. The second concern is, device-to-device (D2D) communication via prose function which is relatively a threat affected path that can be easily affected by the man in the middle (MitM) attack, message drop attack, replay attack, denial of service (DoS) attack, impersonation attack.. To mitigate these threats, this research work is proposing a Secure Authentication Protocol (SAP). The proposed SAP is categorized into 5 phases namely framework of network, enrolment phase, D2D discovery phase, key production—authentication phase and content conveyance phase. Framework of network phase generates function parameters. Enrolment phase registers all user equipment (UE) for verification and also generate an appropriate user application code for respective UE. In this phase, HSS also manages a database that contains detail about all the enrolled. D2D discovery phase allows the UE to discover the neighbors under that proximity area. During the authentication phase, public as well as private secret keys are generated using Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie-Hellman (ECDH) algorithm. In addition to that, this phase implements hash based message authentication code (HMAC) to create application associated keys. In the last phase of content conveyance, most important step is to share Shared Secret Key (SSK) as it mainly responsible while decrypting original message. To make this transmission very secure, quantum channel is used. Quantum Cryptography plays a vital role in this phase for providing security to whole transmission process at high level. Now a days, advanced optical technologies are also using quantum cryptography to establish secured communication. The performance of the proposed SAP is evaluated and compared with the existing protocols by using multiple evaluation criteria such as cost of operation, computational overhead, storage overhead and energy consumption. This article also provides insights into various security threats such as MitM, replay attack, DoS attack, impersonation attack, known key attack due to use of ECC and ECDH. Also, SAP provides a strong pillar against eavesdropping attack due to quantum cryptography. Also, Bennett and Gilles Brassard (BB84) protocol linked with quantum electronics and physics, place a significant role for creation of quantum channel over classical channel, which took security of SAP at next level. D2D (Device to device) communication (dpeaa)DE-He213 LTE-A (long term evolution-advanced (dpeaa)DE-He213 Advanced antenna/optical system (dpeaa)DE-He213 Quantum electronics/physics (dpeaa)DE-He213 Quantum cryptography (dpeaa)DE-He213 4G/5G communication (dpeaa)DE-He213 Vijaya Kumar, P. aut Enthalten in Optical and quantum electronics Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 55(2023), 9 vom: 30. Juni (DE-627)312693869 (DE-600)2000642-1 1572-817X nnns volume:55 year:2023 number:9 day:30 month:06 https://dx.doi.org/10.1007/s11082-023-05018-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 55 2023 9 30 06 |
language |
English |
source |
Enthalten in Optical and quantum electronics 55(2023), 9 vom: 30. Juni volume:55 year:2023 number:9 day:30 month:06 |
sourceStr |
Enthalten in Optical and quantum electronics 55(2023), 9 vom: 30. Juni volume:55 year:2023 number:9 day:30 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
D2D (Device to device) communication LTE-A (long term evolution-advanced Advanced antenna/optical system Quantum electronics/physics Quantum cryptography 4G/5G communication |
isfreeaccess_bool |
false |
container_title |
Optical and quantum electronics |
authorswithroles_txt_mv |
Tayade, Payal @@aut@@ Vijaya Kumar, P. @@aut@@ |
publishDateDaySort_date |
2023-06-30T00:00:00Z |
hierarchy_top_id |
312693869 |
id |
SPR052107302 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052107302</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230723064710.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230701s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-023-05018-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052107302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11082-023-05018-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tayade, Payal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer data securely between various user’s, due to its rudimentary concept of Quantum Key Distribution (QKD). There are two major concerns in the communication. The first concern is for the data transmission which is frequently carried out through some entity of the cellular network such as Home subscriber Server (HSS) or Gateway (GW), and Evolved Node B(eNB), which is inadvisable to preserve confidentiality of the message. The second concern is, device-to-device (D2D) communication via prose function which is relatively a threat affected path that can be easily affected by the man in the middle (MitM) attack, message drop attack, replay attack, denial of service (DoS) attack, impersonation attack.. To mitigate these threats, this research work is proposing a Secure Authentication Protocol (SAP). The proposed SAP is categorized into 5 phases namely framework of network, enrolment phase, D2D discovery phase, key production—authentication phase and content conveyance phase. Framework of network phase generates function parameters. Enrolment phase registers all user equipment (UE) for verification and also generate an appropriate user application code for respective UE. In this phase, HSS also manages a database that contains detail about all the enrolled. D2D discovery phase allows the UE to discover the neighbors under that proximity area. During the authentication phase, public as well as private secret keys are generated using Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie-Hellman (ECDH) algorithm. In addition to that, this phase implements hash based message authentication code (HMAC) to create application associated keys. In the last phase of content conveyance, most important step is to share Shared Secret Key (SSK) as it mainly responsible while decrypting original message. To make this transmission very secure, quantum channel is used. Quantum Cryptography plays a vital role in this phase for providing security to whole transmission process at high level. Now a days, advanced optical technologies are also using quantum cryptography to establish secured communication. The performance of the proposed SAP is evaluated and compared with the existing protocols by using multiple evaluation criteria such as cost of operation, computational overhead, storage overhead and energy consumption. This article also provides insights into various security threats such as MitM, replay attack, DoS attack, impersonation attack, known key attack due to use of ECC and ECDH. Also, SAP provides a strong pillar against eavesdropping attack due to quantum cryptography. Also, Bennett and Gilles Brassard (BB84) protocol linked with quantum electronics and physics, place a significant role for creation of quantum channel over classical channel, which took security of SAP at next level.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">D2D (Device to device) communication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LTE-A (long term evolution-advanced</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Advanced antenna/optical system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum electronics/physics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum cryptography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">4G/5G communication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vijaya Kumar, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969</subfield><subfield code="g">55(2023), 9 vom: 30. Juni</subfield><subfield code="w">(DE-627)312693869</subfield><subfield code="w">(DE-600)2000642-1</subfield><subfield code="x">1572-817X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9</subfield><subfield code="g">day:30</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11082-023-05018-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2023</subfield><subfield code="e">9</subfield><subfield code="b">30</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Tayade, Payal |
spellingShingle |
Tayade, Payal misc D2D (Device to device) communication misc LTE-A (long term evolution-advanced misc Advanced antenna/optical system misc Quantum electronics/physics misc Quantum cryptography misc 4G/5G communication Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication |
authorStr |
Tayade, Payal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312693869 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-817X |
topic_title |
Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication D2D (Device to device) communication (dpeaa)DE-He213 LTE-A (long term evolution-advanced (dpeaa)DE-He213 Advanced antenna/optical system (dpeaa)DE-He213 Quantum electronics/physics (dpeaa)DE-He213 Quantum cryptography (dpeaa)DE-He213 4G/5G communication (dpeaa)DE-He213 |
topic |
misc D2D (Device to device) communication misc LTE-A (long term evolution-advanced misc Advanced antenna/optical system misc Quantum electronics/physics misc Quantum cryptography misc 4G/5G communication |
topic_unstemmed |
misc D2D (Device to device) communication misc LTE-A (long term evolution-advanced misc Advanced antenna/optical system misc Quantum electronics/physics misc Quantum cryptography misc 4G/5G communication |
topic_browse |
misc D2D (Device to device) communication misc LTE-A (long term evolution-advanced misc Advanced antenna/optical system misc Quantum electronics/physics misc Quantum cryptography misc 4G/5G communication |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Optical and quantum electronics |
hierarchy_parent_id |
312693869 |
hierarchy_top_title |
Optical and quantum electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)312693869 (DE-600)2000642-1 |
title |
Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication |
ctrlnum |
(DE-627)SPR052107302 (SPR)s11082-023-05018-x-e |
title_full |
Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication |
author_sort |
Tayade, Payal |
journal |
Optical and quantum electronics |
journalStr |
Optical and quantum electronics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Tayade, Payal Vijaya Kumar, P. |
container_volume |
55 |
format_se |
Elektronische Aufsätze |
author-letter |
Tayade, Payal |
doi_str_mv |
10.1007/s11082-023-05018-x |
title_sort |
quantum based flexible secure authentication protocol (sap) for device to device (d2d) communication |
title_auth |
Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication |
abstract |
Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer data securely between various user’s, due to its rudimentary concept of Quantum Key Distribution (QKD). There are two major concerns in the communication. The first concern is for the data transmission which is frequently carried out through some entity of the cellular network such as Home subscriber Server (HSS) or Gateway (GW), and Evolved Node B(eNB), which is inadvisable to preserve confidentiality of the message. The second concern is, device-to-device (D2D) communication via prose function which is relatively a threat affected path that can be easily affected by the man in the middle (MitM) attack, message drop attack, replay attack, denial of service (DoS) attack, impersonation attack.. To mitigate these threats, this research work is proposing a Secure Authentication Protocol (SAP). The proposed SAP is categorized into 5 phases namely framework of network, enrolment phase, D2D discovery phase, key production—authentication phase and content conveyance phase. Framework of network phase generates function parameters. Enrolment phase registers all user equipment (UE) for verification and also generate an appropriate user application code for respective UE. In this phase, HSS also manages a database that contains detail about all the enrolled. D2D discovery phase allows the UE to discover the neighbors under that proximity area. During the authentication phase, public as well as private secret keys are generated using Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie-Hellman (ECDH) algorithm. In addition to that, this phase implements hash based message authentication code (HMAC) to create application associated keys. In the last phase of content conveyance, most important step is to share Shared Secret Key (SSK) as it mainly responsible while decrypting original message. To make this transmission very secure, quantum channel is used. Quantum Cryptography plays a vital role in this phase for providing security to whole transmission process at high level. Now a days, advanced optical technologies are also using quantum cryptography to establish secured communication. The performance of the proposed SAP is evaluated and compared with the existing protocols by using multiple evaluation criteria such as cost of operation, computational overhead, storage overhead and energy consumption. This article also provides insights into various security threats such as MitM, replay attack, DoS attack, impersonation attack, known key attack due to use of ECC and ECDH. Also, SAP provides a strong pillar against eavesdropping attack due to quantum cryptography. Also, Bennett and Gilles Brassard (BB84) protocol linked with quantum electronics and physics, place a significant role for creation of quantum channel over classical channel, which took security of SAP at next level. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer data securely between various user’s, due to its rudimentary concept of Quantum Key Distribution (QKD). There are two major concerns in the communication. The first concern is for the data transmission which is frequently carried out through some entity of the cellular network such as Home subscriber Server (HSS) or Gateway (GW), and Evolved Node B(eNB), which is inadvisable to preserve confidentiality of the message. The second concern is, device-to-device (D2D) communication via prose function which is relatively a threat affected path that can be easily affected by the man in the middle (MitM) attack, message drop attack, replay attack, denial of service (DoS) attack, impersonation attack.. To mitigate these threats, this research work is proposing a Secure Authentication Protocol (SAP). The proposed SAP is categorized into 5 phases namely framework of network, enrolment phase, D2D discovery phase, key production—authentication phase and content conveyance phase. Framework of network phase generates function parameters. Enrolment phase registers all user equipment (UE) for verification and also generate an appropriate user application code for respective UE. In this phase, HSS also manages a database that contains detail about all the enrolled. D2D discovery phase allows the UE to discover the neighbors under that proximity area. During the authentication phase, public as well as private secret keys are generated using Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie-Hellman (ECDH) algorithm. In addition to that, this phase implements hash based message authentication code (HMAC) to create application associated keys. In the last phase of content conveyance, most important step is to share Shared Secret Key (SSK) as it mainly responsible while decrypting original message. To make this transmission very secure, quantum channel is used. Quantum Cryptography plays a vital role in this phase for providing security to whole transmission process at high level. Now a days, advanced optical technologies are also using quantum cryptography to establish secured communication. The performance of the proposed SAP is evaluated and compared with the existing protocols by using multiple evaluation criteria such as cost of operation, computational overhead, storage overhead and energy consumption. This article also provides insights into various security threats such as MitM, replay attack, DoS attack, impersonation attack, known key attack due to use of ECC and ECDH. Also, SAP provides a strong pillar against eavesdropping attack due to quantum cryptography. Also, Bennett and Gilles Brassard (BB84) protocol linked with quantum electronics and physics, place a significant role for creation of quantum channel over classical channel, which took security of SAP at next level. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer data securely between various user’s, due to its rudimentary concept of Quantum Key Distribution (QKD). There are two major concerns in the communication. The first concern is for the data transmission which is frequently carried out through some entity of the cellular network such as Home subscriber Server (HSS) or Gateway (GW), and Evolved Node B(eNB), which is inadvisable to preserve confidentiality of the message. The second concern is, device-to-device (D2D) communication via prose function which is relatively a threat affected path that can be easily affected by the man in the middle (MitM) attack, message drop attack, replay attack, denial of service (DoS) attack, impersonation attack.. To mitigate these threats, this research work is proposing a Secure Authentication Protocol (SAP). The proposed SAP is categorized into 5 phases namely framework of network, enrolment phase, D2D discovery phase, key production—authentication phase and content conveyance phase. Framework of network phase generates function parameters. Enrolment phase registers all user equipment (UE) for verification and also generate an appropriate user application code for respective UE. In this phase, HSS also manages a database that contains detail about all the enrolled. D2D discovery phase allows the UE to discover the neighbors under that proximity area. During the authentication phase, public as well as private secret keys are generated using Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie-Hellman (ECDH) algorithm. In addition to that, this phase implements hash based message authentication code (HMAC) to create application associated keys. In the last phase of content conveyance, most important step is to share Shared Secret Key (SSK) as it mainly responsible while decrypting original message. To make this transmission very secure, quantum channel is used. Quantum Cryptography plays a vital role in this phase for providing security to whole transmission process at high level. Now a days, advanced optical technologies are also using quantum cryptography to establish secured communication. The performance of the proposed SAP is evaluated and compared with the existing protocols by using multiple evaluation criteria such as cost of operation, computational overhead, storage overhead and energy consumption. This article also provides insights into various security threats such as MitM, replay attack, DoS attack, impersonation attack, known key attack due to use of ECC and ECDH. Also, SAP provides a strong pillar against eavesdropping attack due to quantum cryptography. Also, Bennett and Gilles Brassard (BB84) protocol linked with quantum electronics and physics, place a significant role for creation of quantum channel over classical channel, which took security of SAP at next level. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
9 |
title_short |
Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication |
url |
https://dx.doi.org/10.1007/s11082-023-05018-x |
remote_bool |
true |
author2 |
Vijaya Kumar, P. |
author2Str |
Vijaya Kumar, P. |
ppnlink |
312693869 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11082-023-05018-x |
up_date |
2024-07-04T01:18:25.799Z |
_version_ |
1803609341483286530 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052107302</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230723064710.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230701s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-023-05018-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052107302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11082-023-05018-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tayade, Payal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum based flexible secure authentication protocol (SAP) for device to device (D2D) communication</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Comprehensive inquisition of wireless communication with flexible quantum electronics and physics can be considered as one of the blooming technology. Quantum Cryptography which extends from combination of quantum electronics and physics is one of the best technology that helps to transfer data securely between various user’s, due to its rudimentary concept of Quantum Key Distribution (QKD). There are two major concerns in the communication. The first concern is for the data transmission which is frequently carried out through some entity of the cellular network such as Home subscriber Server (HSS) or Gateway (GW), and Evolved Node B(eNB), which is inadvisable to preserve confidentiality of the message. The second concern is, device-to-device (D2D) communication via prose function which is relatively a threat affected path that can be easily affected by the man in the middle (MitM) attack, message drop attack, replay attack, denial of service (DoS) attack, impersonation attack.. To mitigate these threats, this research work is proposing a Secure Authentication Protocol (SAP). The proposed SAP is categorized into 5 phases namely framework of network, enrolment phase, D2D discovery phase, key production—authentication phase and content conveyance phase. Framework of network phase generates function parameters. Enrolment phase registers all user equipment (UE) for verification and also generate an appropriate user application code for respective UE. In this phase, HSS also manages a database that contains detail about all the enrolled. D2D discovery phase allows the UE to discover the neighbors under that proximity area. During the authentication phase, public as well as private secret keys are generated using Elliptic Curve Cryptography (ECC) and Elliptic Curve Diffie-Hellman (ECDH) algorithm. In addition to that, this phase implements hash based message authentication code (HMAC) to create application associated keys. In the last phase of content conveyance, most important step is to share Shared Secret Key (SSK) as it mainly responsible while decrypting original message. To make this transmission very secure, quantum channel is used. Quantum Cryptography plays a vital role in this phase for providing security to whole transmission process at high level. Now a days, advanced optical technologies are also using quantum cryptography to establish secured communication. The performance of the proposed SAP is evaluated and compared with the existing protocols by using multiple evaluation criteria such as cost of operation, computational overhead, storage overhead and energy consumption. This article also provides insights into various security threats such as MitM, replay attack, DoS attack, impersonation attack, known key attack due to use of ECC and ECDH. Also, SAP provides a strong pillar against eavesdropping attack due to quantum cryptography. Also, Bennett and Gilles Brassard (BB84) protocol linked with quantum electronics and physics, place a significant role for creation of quantum channel over classical channel, which took security of SAP at next level.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">D2D (Device to device) communication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LTE-A (long term evolution-advanced</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Advanced antenna/optical system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum electronics/physics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum cryptography</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">4G/5G communication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vijaya Kumar, P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969</subfield><subfield code="g">55(2023), 9 vom: 30. Juni</subfield><subfield code="w">(DE-627)312693869</subfield><subfield code="w">(DE-600)2000642-1</subfield><subfield code="x">1572-817X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9</subfield><subfield code="g">day:30</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11082-023-05018-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2023</subfield><subfield code="e">9</subfield><subfield code="b">30</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.400505 |