Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity
Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even...
Ausführliche Beschreibung
Autor*in: |
Isayama, Yuri Hayashi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Subsurface sensing technologies and applications - Dordrecht : Springer Science Business Media B.V., 2000, 24(2023), 1 vom: 30. Juni |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2023 ; number:1 ; day:30 ; month:06 |
Links: |
---|
DOI / URN: |
10.1007/s11220-023-00430-9 |
---|
Katalog-ID: |
SPR052108376 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR052108376 | ||
003 | DE-627 | ||
005 | 20231217064615.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230701s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11220-023-00430-9 |2 doi | |
035 | |a (DE-627)SPR052108376 | ||
035 | |a (SPR)s11220-023-00430-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Isayama, Yuri Hayashi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si%$_3%$N%$_4%$ slot-waveguide on a SiO%$_2%$ substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad %$\cdot %$ RIU%$^{-1} \cdot %%%$\mu %$m%$^{-1}%$ (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement. | ||
650 | 4 | |a Multimode interference |7 (dpeaa)DE-He213 | |
650 | 4 | |a Optical sensors |7 (dpeaa)DE-He213 | |
650 | 4 | |a Optical waveguides |7 (dpeaa)DE-He213 | |
650 | 4 | |a Slot-waveguides |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Subsurface sensing technologies and applications |d Dordrecht : Springer Science Business Media B.V., 2000 |g 24(2023), 1 vom: 30. Juni |w (DE-627)320590305 |w (DE-600)2018843-2 |x 1573-9317 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2023 |g number:1 |g day:30 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11220-023-00430-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 24 |j 2023 |e 1 |b 30 |c 06 |
author_variant |
y h i yh yhi |
---|---|
matchkey_str |
article:15739317:2023----::utmdsowvgieesrsnttplrztosoe |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11220-023-00430-9 doi (DE-627)SPR052108376 (SPR)s11220-023-00430-9-e DE-627 ger DE-627 rakwb eng Isayama, Yuri Hayashi verfasserin aut Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si%$_3%$N%$_4%$ slot-waveguide on a SiO%$_2%$ substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad %$\cdot %$ RIU%$^{-1} \cdot %%%$\mu %$m%$^{-1}%$ (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement. Multimode interference (dpeaa)DE-He213 Optical sensors (dpeaa)DE-He213 Optical waveguides (dpeaa)DE-He213 Slot-waveguides (dpeaa)DE-He213 Enthalten in Subsurface sensing technologies and applications Dordrecht : Springer Science Business Media B.V., 2000 24(2023), 1 vom: 30. Juni (DE-627)320590305 (DE-600)2018843-2 1573-9317 nnns volume:24 year:2023 number:1 day:30 month:06 https://dx.doi.org/10.1007/s11220-023-00430-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 24 2023 1 30 06 |
spelling |
10.1007/s11220-023-00430-9 doi (DE-627)SPR052108376 (SPR)s11220-023-00430-9-e DE-627 ger DE-627 rakwb eng Isayama, Yuri Hayashi verfasserin aut Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si%$_3%$N%$_4%$ slot-waveguide on a SiO%$_2%$ substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad %$\cdot %$ RIU%$^{-1} \cdot %%%$\mu %$m%$^{-1}%$ (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement. Multimode interference (dpeaa)DE-He213 Optical sensors (dpeaa)DE-He213 Optical waveguides (dpeaa)DE-He213 Slot-waveguides (dpeaa)DE-He213 Enthalten in Subsurface sensing technologies and applications Dordrecht : Springer Science Business Media B.V., 2000 24(2023), 1 vom: 30. Juni (DE-627)320590305 (DE-600)2018843-2 1573-9317 nnns volume:24 year:2023 number:1 day:30 month:06 https://dx.doi.org/10.1007/s11220-023-00430-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 24 2023 1 30 06 |
allfields_unstemmed |
10.1007/s11220-023-00430-9 doi (DE-627)SPR052108376 (SPR)s11220-023-00430-9-e DE-627 ger DE-627 rakwb eng Isayama, Yuri Hayashi verfasserin aut Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si%$_3%$N%$_4%$ slot-waveguide on a SiO%$_2%$ substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad %$\cdot %$ RIU%$^{-1} \cdot %%%$\mu %$m%$^{-1}%$ (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement. Multimode interference (dpeaa)DE-He213 Optical sensors (dpeaa)DE-He213 Optical waveguides (dpeaa)DE-He213 Slot-waveguides (dpeaa)DE-He213 Enthalten in Subsurface sensing technologies and applications Dordrecht : Springer Science Business Media B.V., 2000 24(2023), 1 vom: 30. Juni (DE-627)320590305 (DE-600)2018843-2 1573-9317 nnns volume:24 year:2023 number:1 day:30 month:06 https://dx.doi.org/10.1007/s11220-023-00430-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 24 2023 1 30 06 |
allfieldsGer |
10.1007/s11220-023-00430-9 doi (DE-627)SPR052108376 (SPR)s11220-023-00430-9-e DE-627 ger DE-627 rakwb eng Isayama, Yuri Hayashi verfasserin aut Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si%$_3%$N%$_4%$ slot-waveguide on a SiO%$_2%$ substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad %$\cdot %$ RIU%$^{-1} \cdot %%%$\mu %$m%$^{-1}%$ (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement. Multimode interference (dpeaa)DE-He213 Optical sensors (dpeaa)DE-He213 Optical waveguides (dpeaa)DE-He213 Slot-waveguides (dpeaa)DE-He213 Enthalten in Subsurface sensing technologies and applications Dordrecht : Springer Science Business Media B.V., 2000 24(2023), 1 vom: 30. Juni (DE-627)320590305 (DE-600)2018843-2 1573-9317 nnns volume:24 year:2023 number:1 day:30 month:06 https://dx.doi.org/10.1007/s11220-023-00430-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 24 2023 1 30 06 |
allfieldsSound |
10.1007/s11220-023-00430-9 doi (DE-627)SPR052108376 (SPR)s11220-023-00430-9-e DE-627 ger DE-627 rakwb eng Isayama, Yuri Hayashi verfasserin aut Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si%$_3%$N%$_4%$ slot-waveguide on a SiO%$_2%$ substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad %$\cdot %$ RIU%$^{-1} \cdot %%%$\mu %$m%$^{-1}%$ (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement. Multimode interference (dpeaa)DE-He213 Optical sensors (dpeaa)DE-He213 Optical waveguides (dpeaa)DE-He213 Slot-waveguides (dpeaa)DE-He213 Enthalten in Subsurface sensing technologies and applications Dordrecht : Springer Science Business Media B.V., 2000 24(2023), 1 vom: 30. Juni (DE-627)320590305 (DE-600)2018843-2 1573-9317 nnns volume:24 year:2023 number:1 day:30 month:06 https://dx.doi.org/10.1007/s11220-023-00430-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 24 2023 1 30 06 |
language |
English |
source |
Enthalten in Subsurface sensing technologies and applications 24(2023), 1 vom: 30. Juni volume:24 year:2023 number:1 day:30 month:06 |
sourceStr |
Enthalten in Subsurface sensing technologies and applications 24(2023), 1 vom: 30. Juni volume:24 year:2023 number:1 day:30 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Multimode interference Optical sensors Optical waveguides Slot-waveguides |
isfreeaccess_bool |
false |
container_title |
Subsurface sensing technologies and applications |
authorswithroles_txt_mv |
Isayama, Yuri Hayashi @@aut@@ |
publishDateDaySort_date |
2023-06-30T00:00:00Z |
hierarchy_top_id |
320590305 |
id |
SPR052108376 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052108376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231217064615.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230701s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11220-023-00430-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052108376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11220-023-00430-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Isayama, Yuri Hayashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si%$_3%$N%$_4%$ slot-waveguide on a SiO%$_2%$ substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad %$\cdot %$ RIU%$^{-1} \cdot %%%$\mu %$m%$^{-1}%$ (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multimode interference</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical sensors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slot-waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Subsurface sensing technologies and applications</subfield><subfield code="d">Dordrecht : Springer Science Business Media B.V., 2000</subfield><subfield code="g">24(2023), 1 vom: 30. Juni</subfield><subfield code="w">(DE-627)320590305</subfield><subfield code="w">(DE-600)2018843-2</subfield><subfield code="x">1573-9317</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11220-023-00430-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Isayama, Yuri Hayashi |
spellingShingle |
Isayama, Yuri Hayashi misc Multimode interference misc Optical sensors misc Optical waveguides misc Slot-waveguides Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity |
authorStr |
Isayama, Yuri Hayashi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320590305 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-9317 |
topic_title |
Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity Multimode interference (dpeaa)DE-He213 Optical sensors (dpeaa)DE-He213 Optical waveguides (dpeaa)DE-He213 Slot-waveguides (dpeaa)DE-He213 |
topic |
misc Multimode interference misc Optical sensors misc Optical waveguides misc Slot-waveguides |
topic_unstemmed |
misc Multimode interference misc Optical sensors misc Optical waveguides misc Slot-waveguides |
topic_browse |
misc Multimode interference misc Optical sensors misc Optical waveguides misc Slot-waveguides |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Subsurface sensing technologies and applications |
hierarchy_parent_id |
320590305 |
hierarchy_top_title |
Subsurface sensing technologies and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320590305 (DE-600)2018843-2 |
title |
Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity |
ctrlnum |
(DE-627)SPR052108376 (SPR)s11220-023-00430-9-e |
title_full |
Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity |
author_sort |
Isayama, Yuri Hayashi |
journal |
Subsurface sensing technologies and applications |
journalStr |
Subsurface sensing technologies and applications |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Isayama, Yuri Hayashi |
container_volume |
24 |
format_se |
Elektronische Aufsätze |
author-letter |
Isayama, Yuri Hayashi |
doi_str_mv |
10.1007/s11220-023-00430-9 |
title_sort |
multimode slot-waveguide sensor using te/tm polarizations for enhanced sensitivity |
title_auth |
Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity |
abstract |
Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si%$_3%$N%$_4%$ slot-waveguide on a SiO%$_2%$ substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad %$\cdot %$ RIU%$^{-1} \cdot %%%$\mu %$m%$^{-1}%$ (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si%$_3%$N%$_4%$ slot-waveguide on a SiO%$_2%$ substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad %$\cdot %$ RIU%$^{-1} \cdot %%%$\mu %$m%$^{-1}%$ (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si%$_3%$N%$_4%$ slot-waveguide on a SiO%$_2%$ substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad %$\cdot %$ RIU%$^{-1} \cdot %%%$\mu %$m%$^{-1}%$ (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
1 |
title_short |
Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity |
url |
https://dx.doi.org/10.1007/s11220-023-00430-9 |
remote_bool |
true |
ppnlink |
320590305 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11220-023-00430-9 |
up_date |
2024-07-04T01:18:42.417Z |
_version_ |
1803609358905376768 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052108376</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231217064615.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230701s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11220-023-00430-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052108376</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11220-023-00430-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Isayama, Yuri Hayashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multimode Slot-Waveguide Sensor Using TE/TM Polarizations for Enhanced Sensitivity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The propagating modes of conventional rib and channel waveguides utilized in Multimode Interference sensors have a capacity for interaction with the sample material limited to the size and intensity of the evanescent tail of the modes, which leads to a limitation in device sensitivity. Even though design adaptations can be employed to improve this interaction, such as geometry optimization and use of higher-order modes, new strategies are necessary to further improve device performance. This study investigates the adoption of a different structure to serve as the platform for Multimode Interference sensing, the slot-waveguide. A Si%$_3%$N%$_4%$ slot-waveguide on a SiO%$_2%$ substrate is numerically modeled, and a demonstration is presented on how the low-index guiding mechanism allied with a careful selection of the propagating modes can be used for sensitivity enhancement. Optimized devices presented bulk sensitivities per sensor length up to 3.43 rad %$\cdot %$ RIU%$^{-1} \cdot %%%$\mu %$m%$^{-1}%$ (for 633 nm wavelength of operation), that when compared to the highest sensitivity MMI sensors in the literature represented roughly a 90% enhancement.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multimode interference</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical sensors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slot-waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Subsurface sensing technologies and applications</subfield><subfield code="d">Dordrecht : Springer Science Business Media B.V., 2000</subfield><subfield code="g">24(2023), 1 vom: 30. Juni</subfield><subfield code="w">(DE-627)320590305</subfield><subfield code="w">(DE-600)2018843-2</subfield><subfield code="x">1573-9317</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11220-023-00430-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.40047 |