Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer
Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methyla...
Ausführliche Beschreibung
Autor*in: |
Ye, Zhen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC cancer - London : BioMed Central, 2001, 23(2023), 1 vom: 03. Juli |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2023 ; number:1 ; day:03 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/s12885-023-10922-2 |
---|
Katalog-ID: |
SPR052136027 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR052136027 | ||
003 | DE-627 | ||
005 | 20230704064725.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230704s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12885-023-10922-2 |2 doi | |
035 | |a (DE-627)SPR052136027 | ||
035 | |a (SPR)s12885-023-10922-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ye, Zhen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. Results According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand–receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). Conclusion In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer. | ||
650 | 4 | |a Hypermethylation |7 (dpeaa)DE-He213 | |
650 | 4 | |a NaiveBayes |7 (dpeaa)DE-He213 | |
650 | 4 | |a 10-fold cross-validation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Immune estimations |7 (dpeaa)DE-He213 | |
650 | 4 | |a Colorectal cancer |7 (dpeaa)DE-He213 | |
700 | 1 | |a Song, Guangle |4 aut | |
700 | 1 | |a Liang, Jianwei |4 aut | |
700 | 1 | |a Yi, Shuying |4 aut | |
700 | 1 | |a Gao, Yuqi |4 aut | |
700 | 1 | |a Jiang, Hanming |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC cancer |d London : BioMed Central, 2001 |g 23(2023), 1 vom: 03. Juli |w (DE-627)326643710 |w (DE-600)2041352-X |x 1471-2407 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2023 |g number:1 |g day:03 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12885-023-10922-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 23 |j 2023 |e 1 |b 03 |c 07 |
author_variant |
z y zy g s gs j l jl s y sy y g yg h j hj |
---|---|
matchkey_str |
article:14712407:2023----::piiesreigfnmtyainiecmiewtgnepesoaayitietfda |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s12885-023-10922-2 doi (DE-627)SPR052136027 (SPR)s12885-023-10922-2-e DE-627 ger DE-627 rakwb eng Ye, Zhen verfasserin aut Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. Results According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand–receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). Conclusion In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer. Hypermethylation (dpeaa)DE-He213 NaiveBayes (dpeaa)DE-He213 10-fold cross-validation (dpeaa)DE-He213 Immune estimations (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 Song, Guangle aut Liang, Jianwei aut Yi, Shuying aut Gao, Yuqi aut Jiang, Hanming aut Enthalten in BMC cancer London : BioMed Central, 2001 23(2023), 1 vom: 03. Juli (DE-627)326643710 (DE-600)2041352-X 1471-2407 nnns volume:23 year:2023 number:1 day:03 month:07 https://dx.doi.org/10.1186/s12885-023-10922-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 03 07 |
spelling |
10.1186/s12885-023-10922-2 doi (DE-627)SPR052136027 (SPR)s12885-023-10922-2-e DE-627 ger DE-627 rakwb eng Ye, Zhen verfasserin aut Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. Results According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand–receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). Conclusion In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer. Hypermethylation (dpeaa)DE-He213 NaiveBayes (dpeaa)DE-He213 10-fold cross-validation (dpeaa)DE-He213 Immune estimations (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 Song, Guangle aut Liang, Jianwei aut Yi, Shuying aut Gao, Yuqi aut Jiang, Hanming aut Enthalten in BMC cancer London : BioMed Central, 2001 23(2023), 1 vom: 03. Juli (DE-627)326643710 (DE-600)2041352-X 1471-2407 nnns volume:23 year:2023 number:1 day:03 month:07 https://dx.doi.org/10.1186/s12885-023-10922-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 03 07 |
allfields_unstemmed |
10.1186/s12885-023-10922-2 doi (DE-627)SPR052136027 (SPR)s12885-023-10922-2-e DE-627 ger DE-627 rakwb eng Ye, Zhen verfasserin aut Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. Results According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand–receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). Conclusion In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer. Hypermethylation (dpeaa)DE-He213 NaiveBayes (dpeaa)DE-He213 10-fold cross-validation (dpeaa)DE-He213 Immune estimations (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 Song, Guangle aut Liang, Jianwei aut Yi, Shuying aut Gao, Yuqi aut Jiang, Hanming aut Enthalten in BMC cancer London : BioMed Central, 2001 23(2023), 1 vom: 03. Juli (DE-627)326643710 (DE-600)2041352-X 1471-2407 nnns volume:23 year:2023 number:1 day:03 month:07 https://dx.doi.org/10.1186/s12885-023-10922-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 03 07 |
allfieldsGer |
10.1186/s12885-023-10922-2 doi (DE-627)SPR052136027 (SPR)s12885-023-10922-2-e DE-627 ger DE-627 rakwb eng Ye, Zhen verfasserin aut Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. Results According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand–receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). Conclusion In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer. Hypermethylation (dpeaa)DE-He213 NaiveBayes (dpeaa)DE-He213 10-fold cross-validation (dpeaa)DE-He213 Immune estimations (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 Song, Guangle aut Liang, Jianwei aut Yi, Shuying aut Gao, Yuqi aut Jiang, Hanming aut Enthalten in BMC cancer London : BioMed Central, 2001 23(2023), 1 vom: 03. Juli (DE-627)326643710 (DE-600)2041352-X 1471-2407 nnns volume:23 year:2023 number:1 day:03 month:07 https://dx.doi.org/10.1186/s12885-023-10922-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 03 07 |
allfieldsSound |
10.1186/s12885-023-10922-2 doi (DE-627)SPR052136027 (SPR)s12885-023-10922-2-e DE-627 ger DE-627 rakwb eng Ye, Zhen verfasserin aut Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. Results According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand–receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). Conclusion In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer. Hypermethylation (dpeaa)DE-He213 NaiveBayes (dpeaa)DE-He213 10-fold cross-validation (dpeaa)DE-He213 Immune estimations (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 Song, Guangle aut Liang, Jianwei aut Yi, Shuying aut Gao, Yuqi aut Jiang, Hanming aut Enthalten in BMC cancer London : BioMed Central, 2001 23(2023), 1 vom: 03. Juli (DE-627)326643710 (DE-600)2041352-X 1471-2407 nnns volume:23 year:2023 number:1 day:03 month:07 https://dx.doi.org/10.1186/s12885-023-10922-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 23 2023 1 03 07 |
language |
English |
source |
Enthalten in BMC cancer 23(2023), 1 vom: 03. Juli volume:23 year:2023 number:1 day:03 month:07 |
sourceStr |
Enthalten in BMC cancer 23(2023), 1 vom: 03. Juli volume:23 year:2023 number:1 day:03 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hypermethylation NaiveBayes 10-fold cross-validation Immune estimations Colorectal cancer |
isfreeaccess_bool |
true |
container_title |
BMC cancer |
authorswithroles_txt_mv |
Ye, Zhen @@aut@@ Song, Guangle @@aut@@ Liang, Jianwei @@aut@@ Yi, Shuying @@aut@@ Gao, Yuqi @@aut@@ Jiang, Hanming @@aut@@ |
publishDateDaySort_date |
2023-07-03T00:00:00Z |
hierarchy_top_id |
326643710 |
id |
SPR052136027 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052136027</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230704064725.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230704s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12885-023-10922-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052136027</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12885-023-10922-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ye, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. Results According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand–receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). Conclusion In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypermethylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NaiveBayes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">10-fold cross-validation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immune estimations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colorectal cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Guangle</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Jianwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yi, Shuying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yuqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Hanming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC cancer</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">23(2023), 1 vom: 03. Juli</subfield><subfield code="w">(DE-627)326643710</subfield><subfield code="w">(DE-600)2041352-X</subfield><subfield code="x">1471-2407</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12885-023-10922-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Ye, Zhen |
spellingShingle |
Ye, Zhen misc Hypermethylation misc NaiveBayes misc 10-fold cross-validation misc Immune estimations misc Colorectal cancer Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer |
authorStr |
Ye, Zhen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643710 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2407 |
topic_title |
Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer Hypermethylation (dpeaa)DE-He213 NaiveBayes (dpeaa)DE-He213 10-fold cross-validation (dpeaa)DE-He213 Immune estimations (dpeaa)DE-He213 Colorectal cancer (dpeaa)DE-He213 |
topic |
misc Hypermethylation misc NaiveBayes misc 10-fold cross-validation misc Immune estimations misc Colorectal cancer |
topic_unstemmed |
misc Hypermethylation misc NaiveBayes misc 10-fold cross-validation misc Immune estimations misc Colorectal cancer |
topic_browse |
misc Hypermethylation misc NaiveBayes misc 10-fold cross-validation misc Immune estimations misc Colorectal cancer |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC cancer |
hierarchy_parent_id |
326643710 |
hierarchy_top_title |
BMC cancer |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643710 (DE-600)2041352-X |
title |
Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer |
ctrlnum |
(DE-627)SPR052136027 (SPR)s12885-023-10922-2-e |
title_full |
Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer |
author_sort |
Ye, Zhen |
journal |
BMC cancer |
journalStr |
BMC cancer |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Ye, Zhen Song, Guangle Liang, Jianwei Yi, Shuying Gao, Yuqi Jiang, Hanming |
container_volume |
23 |
format_se |
Elektronische Aufsätze |
author-letter |
Ye, Zhen |
doi_str_mv |
10.1186/s12885-023-10922-2 |
title_sort |
optimized screening of dna methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer |
title_auth |
Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer |
abstract |
Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. Results According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand–receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). Conclusion In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer. © The Author(s) 2023 |
abstractGer |
Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. Results According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand–receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). Conclusion In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer. © The Author(s) 2023 |
abstract_unstemmed |
Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. Results According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand–receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). Conclusion In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer |
url |
https://dx.doi.org/10.1186/s12885-023-10922-2 |
remote_bool |
true |
author2 |
Song, Guangle Liang, Jianwei Yi, Shuying Gao, Yuqi Jiang, Hanming |
author2Str |
Song, Guangle Liang, Jianwei Yi, Shuying Gao, Yuqi Jiang, Hanming |
ppnlink |
326643710 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12885-023-10922-2 |
up_date |
2024-07-04T01:26:37.585Z |
_version_ |
1803609857157234688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052136027</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230704064725.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230704s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12885-023-10922-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052136027</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12885-023-10922-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ye, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimized screening of DNA methylation sites combined with gene expression analysis to identify diagnostic markers of colorectal cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The prognosis of patients with colorectal cancer is related to early detection. However, commonly used screening markers lack sensitivity and specificity. In this study, we identified diagnostic methylation sites for colorectal cancer. Methods After screening the colorectal cancer methylation dataset, diagnostic sites were identified via survival analysis, difference analysis, and ridge regression dimensionality reduction. The correlation between the selected methylation sites and the estimation of immune cell infiltration was analyzed. The accuracy of the diagnosis was verified using different datasets and the 10-fold crossover method. Results According to Gene Ontology, the main enrichment pathways of genes with hypermethylation sites are axon development, axonogenesis, and pattern specification processes. However, the Kyoto Encyclopedia of Genes and Genomes (KEGG) suggests the following main enrichment pathways: neuroactive ligand–receptor interaction, calcium signaling, and cAMP signaling. In The Cancer Genome Atlas (TCGA) and GSE131013 datasets, the area under the curve of cg07628404 was > 0.95. For the NaiveBayes machine model of cg02604524, cg07628404, and cg27364741, the accuracies of 10-fold cross-validation in the GSE131013 and TCGA datasets were 95% and 99.4%, respectively. The survival prognosis of the hypomethylated group (cg02604524, cg07628404, and cg27364741) was better than that of the hypermethylated group. The mutation risk did not differ between the hypermethylated and hypomethylated groups. The correlation coefficient between the three loci and CD4 central memory T cells, hematological stem cells, and other immune cells was not high (p < 0.05). Conclusion In cases of colorectal cancer, the main enrichment pathway of genes with hypermethylated sites was axon and nerve development. In the biopsy tissues, the hypermethylation sites were diagnostic for colorectal cancer, and the NaiveBayes machine model of the three loci showed good diagnostic performance. Site (cg02604524, cg07628404, and cg27364741) hypermethylation predicts poor survival for colorectal cancer. Three methylation sites were weakly correlated with individual immune cell infiltration. Hypermethylation sites may be a useful repository for diagnosing colorectal cancer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypermethylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NaiveBayes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">10-fold cross-validation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immune estimations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Colorectal cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Guangle</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Jianwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yi, Shuying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yuqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Hanming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC cancer</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">23(2023), 1 vom: 03. Juli</subfield><subfield code="w">(DE-627)326643710</subfield><subfield code="w">(DE-600)2041352-X</subfield><subfield code="x">1471-2407</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:03</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12885-023-10922-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">03</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.4020834 |