Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study
Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail densit...
Ausführliche Beschreibung
Autor*in: |
Gong, Yanfeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Parasites & vectors - London : BioMed Central, 2008, 16(2023), 1 vom: 14. Juli |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2023 ; number:1 ; day:14 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/s13071-023-05846-6 |
---|
Katalog-ID: |
SPR052255131 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR052255131 | ||
003 | DE-627 | ||
005 | 20230715064756.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230715s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13071-023-05846-6 |2 doi | |
035 | |a (DE-627)SPR052255131 | ||
035 | |a (SPR)s13071-023-05846-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Gong, Yanfeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract | ||
650 | 4 | |a Three Gorges Dam |7 (dpeaa)DE-He213 | |
650 | 4 | |a Snail abundance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Spatial–temporal effects |7 (dpeaa)DE-He213 | |
650 | 4 | |a snail |7 (dpeaa)DE-He213 | |
700 | 1 | |a Tong, Yixin |4 aut | |
700 | 1 | |a Jiang, Honglin |4 aut | |
700 | 1 | |a Xu, Ning |4 aut | |
700 | 1 | |a Yin, Jiangfan |4 aut | |
700 | 1 | |a Wang, Jiamin |4 aut | |
700 | 1 | |a Huang, Junhui |4 aut | |
700 | 1 | |a Chen, Yue |4 aut | |
700 | 1 | |a Jiang, Qingwu |4 aut | |
700 | 1 | |a Li, Shizhu |4 aut | |
700 | 1 | |a Zhou, Yibiao |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Parasites & vectors |d London : BioMed Central, 2008 |g 16(2023), 1 vom: 14. Juli |w (DE-627)558690076 |w (DE-600)2409480-8 |x 1756-3305 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2023 |g number:1 |g day:14 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13071-023-05846-6 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2023 |e 1 |b 14 |c 07 |
author_variant |
y g yg y t yt h j hj n x nx j y jy j w jw j h jh y c yc q j qj s l sl y z yz |
---|---|
matchkey_str |
article:17563305:2023----::hegredmoetadfeetadiesntednhsaitmoaeouinfhcagisalestbsdnbysasa |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s13071-023-05846-6 doi (DE-627)SPR052255131 (SPR)s13071-023-05846-6-e DE-627 ger DE-627 rakwb eng Gong, Yanfeng verfasserin aut Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract Three Gorges Dam (dpeaa)DE-He213 Snail abundance (dpeaa)DE-He213 Spatial–temporal effects (dpeaa)DE-He213 snail (dpeaa)DE-He213 Tong, Yixin aut Jiang, Honglin aut Xu, Ning aut Yin, Jiangfan aut Wang, Jiamin aut Huang, Junhui aut Chen, Yue aut Jiang, Qingwu aut Li, Shizhu aut Zhou, Yibiao aut Enthalten in Parasites & vectors London : BioMed Central, 2008 16(2023), 1 vom: 14. Juli (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:16 year:2023 number:1 day:14 month:07 https://dx.doi.org/10.1186/s13071-023-05846-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 14 07 |
spelling |
10.1186/s13071-023-05846-6 doi (DE-627)SPR052255131 (SPR)s13071-023-05846-6-e DE-627 ger DE-627 rakwb eng Gong, Yanfeng verfasserin aut Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract Three Gorges Dam (dpeaa)DE-He213 Snail abundance (dpeaa)DE-He213 Spatial–temporal effects (dpeaa)DE-He213 snail (dpeaa)DE-He213 Tong, Yixin aut Jiang, Honglin aut Xu, Ning aut Yin, Jiangfan aut Wang, Jiamin aut Huang, Junhui aut Chen, Yue aut Jiang, Qingwu aut Li, Shizhu aut Zhou, Yibiao aut Enthalten in Parasites & vectors London : BioMed Central, 2008 16(2023), 1 vom: 14. Juli (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:16 year:2023 number:1 day:14 month:07 https://dx.doi.org/10.1186/s13071-023-05846-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 14 07 |
allfields_unstemmed |
10.1186/s13071-023-05846-6 doi (DE-627)SPR052255131 (SPR)s13071-023-05846-6-e DE-627 ger DE-627 rakwb eng Gong, Yanfeng verfasserin aut Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract Three Gorges Dam (dpeaa)DE-He213 Snail abundance (dpeaa)DE-He213 Spatial–temporal effects (dpeaa)DE-He213 snail (dpeaa)DE-He213 Tong, Yixin aut Jiang, Honglin aut Xu, Ning aut Yin, Jiangfan aut Wang, Jiamin aut Huang, Junhui aut Chen, Yue aut Jiang, Qingwu aut Li, Shizhu aut Zhou, Yibiao aut Enthalten in Parasites & vectors London : BioMed Central, 2008 16(2023), 1 vom: 14. Juli (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:16 year:2023 number:1 day:14 month:07 https://dx.doi.org/10.1186/s13071-023-05846-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 14 07 |
allfieldsGer |
10.1186/s13071-023-05846-6 doi (DE-627)SPR052255131 (SPR)s13071-023-05846-6-e DE-627 ger DE-627 rakwb eng Gong, Yanfeng verfasserin aut Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract Three Gorges Dam (dpeaa)DE-He213 Snail abundance (dpeaa)DE-He213 Spatial–temporal effects (dpeaa)DE-He213 snail (dpeaa)DE-He213 Tong, Yixin aut Jiang, Honglin aut Xu, Ning aut Yin, Jiangfan aut Wang, Jiamin aut Huang, Junhui aut Chen, Yue aut Jiang, Qingwu aut Li, Shizhu aut Zhou, Yibiao aut Enthalten in Parasites & vectors London : BioMed Central, 2008 16(2023), 1 vom: 14. Juli (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:16 year:2023 number:1 day:14 month:07 https://dx.doi.org/10.1186/s13071-023-05846-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 14 07 |
allfieldsSound |
10.1186/s13071-023-05846-6 doi (DE-627)SPR052255131 (SPR)s13071-023-05846-6-e DE-627 ger DE-627 rakwb eng Gong, Yanfeng verfasserin aut Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract Three Gorges Dam (dpeaa)DE-He213 Snail abundance (dpeaa)DE-He213 Spatial–temporal effects (dpeaa)DE-He213 snail (dpeaa)DE-He213 Tong, Yixin aut Jiang, Honglin aut Xu, Ning aut Yin, Jiangfan aut Wang, Jiamin aut Huang, Junhui aut Chen, Yue aut Jiang, Qingwu aut Li, Shizhu aut Zhou, Yibiao aut Enthalten in Parasites & vectors London : BioMed Central, 2008 16(2023), 1 vom: 14. Juli (DE-627)558690076 (DE-600)2409480-8 1756-3305 nnns volume:16 year:2023 number:1 day:14 month:07 https://dx.doi.org/10.1186/s13071-023-05846-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2023 1 14 07 |
language |
English |
source |
Enthalten in Parasites & vectors 16(2023), 1 vom: 14. Juli volume:16 year:2023 number:1 day:14 month:07 |
sourceStr |
Enthalten in Parasites & vectors 16(2023), 1 vom: 14. Juli volume:16 year:2023 number:1 day:14 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Three Gorges Dam Snail abundance Spatial–temporal effects snail |
isfreeaccess_bool |
true |
container_title |
Parasites & vectors |
authorswithroles_txt_mv |
Gong, Yanfeng @@aut@@ Tong, Yixin @@aut@@ Jiang, Honglin @@aut@@ Xu, Ning @@aut@@ Yin, Jiangfan @@aut@@ Wang, Jiamin @@aut@@ Huang, Junhui @@aut@@ Chen, Yue @@aut@@ Jiang, Qingwu @@aut@@ Li, Shizhu @@aut@@ Zhou, Yibiao @@aut@@ |
publishDateDaySort_date |
2023-07-14T00:00:00Z |
hierarchy_top_id |
558690076 |
id |
SPR052255131 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052255131</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715064756.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230715s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13071-023-05846-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052255131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13071-023-05846-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gong, Yanfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three Gorges Dam</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Snail abundance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial–temporal effects</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">snail</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Yixin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Honglin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Ning</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Jiangfan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiamin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Junhui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Qingwu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shizhu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Yibiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">16(2023), 1 vom: 14. Juli</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13071-023-05846-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Gong, Yanfeng |
spellingShingle |
Gong, Yanfeng misc Three Gorges Dam misc Snail abundance misc Spatial–temporal effects misc snail Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study |
authorStr |
Gong, Yanfeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)558690076 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1756-3305 |
topic_title |
Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study Three Gorges Dam (dpeaa)DE-He213 Snail abundance (dpeaa)DE-He213 Spatial–temporal effects (dpeaa)DE-He213 snail (dpeaa)DE-He213 |
topic |
misc Three Gorges Dam misc Snail abundance misc Spatial–temporal effects misc snail |
topic_unstemmed |
misc Three Gorges Dam misc Snail abundance misc Spatial–temporal effects misc snail |
topic_browse |
misc Three Gorges Dam misc Snail abundance misc Spatial–temporal effects misc snail |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Parasites & vectors |
hierarchy_parent_id |
558690076 |
hierarchy_top_title |
Parasites & vectors |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)558690076 (DE-600)2409480-8 |
title |
Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study |
ctrlnum |
(DE-627)SPR052255131 (SPR)s13071-023-05846-6-e |
title_full |
Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study |
author_sort |
Gong, Yanfeng |
journal |
Parasites & vectors |
journalStr |
Parasites & vectors |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Gong, Yanfeng Tong, Yixin Jiang, Honglin Xu, Ning Yin, Jiangfan Wang, Jiamin Huang, Junhui Chen, Yue Jiang, Qingwu Li, Shizhu Zhou, Yibiao |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Gong, Yanfeng |
doi_str_mv |
10.1186/s13071-023-05846-6 |
title_sort |
three gorges dam: potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a bayesian spatial–temporal model and 5-year longitudinal study |
title_auth |
Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study |
abstract |
Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract © The Author(s) 2023 |
abstractGer |
Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract © The Author(s) 2023 |
abstract_unstemmed |
Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study |
url |
https://dx.doi.org/10.1186/s13071-023-05846-6 |
remote_bool |
true |
author2 |
Tong, Yixin Jiang, Honglin Xu, Ning Yin, Jiangfan Wang, Jiamin Huang, Junhui Chen, Yue Jiang, Qingwu Li, Shizhu Zhou, Yibiao |
author2Str |
Tong, Yixin Jiang, Honglin Xu, Ning Yin, Jiangfan Wang, Jiamin Huang, Junhui Chen, Yue Jiang, Qingwu Li, Shizhu Zhou, Yibiao |
ppnlink |
558690076 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13071-023-05846-6 |
up_date |
2024-07-04T02:01:46.225Z |
_version_ |
1803612068225482752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052255131</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230715064756.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230715s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13071-023-05846-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052255131</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13071-023-05846-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gong, Yanfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Three Gorges Dam: Potential differential drivers and trend in the spatio-temporal evolution of the change in snail density based on a Bayesian spatial–temporal model and 5-year longitudinal study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Snail abundance varies spatially and temporally. Few studies have elucidated the different effects of the determinants affecting snail density between upstream and downstream areas of the Three Gorges Dam (TGD). We therefore investigated the differential drivers of changes in snail density in these areas, as well as the spatial–temporal effects of these changes. Methods A snail survey was conducted at 200 sites over a 5-year period to monitor dynamic changes in snail abundance within the Yangtze River basin. Data on corresponding variables that might affect snail abundance, such as meteorology, vegetation, terrain and economy, were collected from multiple data sources. A Bayesian spatial–temporal modeling framework was constructed to explore the differential determinants driving the change in snail density and the spatial–temporal effects of the change. Results Volatility in snail density was unambiguously detected in the downstream area of the TGD, while a small increment in volatility was detected in the upstream area. Regarding the downstream area of the TGD, snail density was positively associated with the average minimum temperature in January of the same year, the annual Normalized Difference Vegetation Index (NDVI) of the previous year and the second, third and fourth quartile, respectively, of average annual relative humidity of the previous year. Snail density was negatively associated with the average maximum temperature in July of the previous year and annual nighttime light of the previous year. An approximately inverted “U” curve of relative risk was detected among sites with a greater average annual ground surface temperature in the previous year. Regarding the upstream area, snail density was positively associated with NDVI and with the second, third and fourth quartile, respectively, of total precipitation of the previous year. Snail density was negatively associated with slope. Conclusions This study demonstrated a rebound in snail density between 2015 and 2019. In particular, temperature, humidity, vegetation and human activity were the main drivers affecting snail abundance in the downstream area of the TGD, while precipitation, slope and vegetation were the main drivers affecting snail abundance in the upstream area. These findings can assist authorities to develop and perform more precise strategies for surveys and control of snail populations. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three Gorges Dam</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Snail abundance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spatial–temporal effects</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">snail</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Yixin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Honglin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Ning</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Jiangfan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiamin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Junhui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Qingwu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shizhu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Yibiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Parasites & vectors</subfield><subfield code="d">London : BioMed Central, 2008</subfield><subfield code="g">16(2023), 1 vom: 14. Juli</subfield><subfield code="w">(DE-627)558690076</subfield><subfield code="w">(DE-600)2409480-8</subfield><subfield code="x">1756-3305</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13071-023-05846-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.401087 |