On the distribution of zeros of linear combinations of Dirichlet %$L%$-functions on the critical line

Abstract Let %$\chi%$ be a primitive Dirichlet character. Let %$\varepsilon%$ be an arbitrary positive number. We study the distribution of zeros of the function G(t)=a1Z(t,χ1)+a2Z(t,χ2)%$G(t)=a_1Z(t,\chi_1)+a_2Z(t,\chi_2)%$,where %$a_1,a_2%$ are real numbers and %$Z (t, \chi)%$ is an analogue of th...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Tam, D. D. [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Anmerkung:

© Akadémiai Kiadó, Budapest, Hungary 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Acta mathematica hungarica - Dordrecht [u.a.] : Springer Science + Business Media B.V., 1950, 170(2023), 1 vom: Juni, Seite 110-149

Übergeordnetes Werk:

volume:170 ; year:2023 ; number:1 ; month:06 ; pages:110-149

Links:

Volltext

DOI / URN:

10.1007/s10474-023-01348-0

Katalog-ID:

SPR052274454

Nicht das Richtige dabei?

Schreiben Sie uns!