High-accuracy model-based reinforcement learning, a survey

Abstract Deep reinforcement learning has shown remarkable success in the past few years. Highly complex sequential decision making problems from game playing and robotics have been solved with deep model-free methods. Unfortunately, the sample complexity of model-free methods is often high. Model-ba...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Plaat, Aske [verfasserIn]

Kosters, Walter

Preuss, Mike

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Model-based reinforcement learning

Latent models

Deep learning

Machine learning

Planning

Anmerkung:

© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Artificial intelligence review - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986, 56(2023), 9 vom: 04. Feb., Seite 9541-9573

Übergeordnetes Werk:

volume:56 ; year:2023 ; number:9 ; day:04 ; month:02 ; pages:9541-9573

Links:

Volltext

DOI / URN:

10.1007/s10462-022-10335-w

Katalog-ID:

SPR052288617

Nicht das Richtige dabei?

Schreiben Sie uns!