Comparison of machine learning techniques for spam detection

Abstract Email is a useful communication medium for better reach. There are two types of emails, those are ham or legitimate email and spam email. Spam is a kind of bulk or unsolicited email that contains an advertisement, phishing website link, malware, Trojan, etc. This research aims to classify s...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Ghosh, Argha [verfasserIn]

Senthilrajan, A.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Machine learning algorithms

Classification

Spam email detection

Machine learning

Artificial intelligence

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Multimedia tools and applications - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1995, 82(2023), 19 vom: 20. Feb., Seite 29227-29254

Übergeordnetes Werk:

volume:82 ; year:2023 ; number:19 ; day:20 ; month:02 ; pages:29227-29254

Links:

Volltext

DOI / URN:

10.1007/s11042-023-14689-3

Katalog-ID:

SPR052344843

Nicht das Richtige dabei?

Schreiben Sie uns!