What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry
Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-1...
Ausführliche Beschreibung
Autor*in: |
Santhakumaran, Shalini [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC nephrology - London : BioMed Central, 2000, 24(2023), 1 vom: 08. Mai |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2023 ; number:1 ; day:08 ; month:05 |
Links: |
---|
DOI / URN: |
10.1186/s12882-023-03148-8 |
---|
Katalog-ID: |
SPR052391361 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR052391361 | ||
003 | DE-627 | ||
005 | 20230726102154.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230726s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12882-023-03148-8 |2 doi | |
035 | |a (DE-627)SPR052391361 | ||
035 | |a (SPR)s12882-023-03148-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Santhakumaran, Shalini |e verfasserin |4 aut | |
245 | 1 | 0 | |a What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-19 infections amongst KRT patients in England. Methods Adults receiving KRT in England were linked to two sources of data on positive COVID-19 tests recorded March-August 2020: (1) submissions from renal centres to the UK Renal Registry (UKRR) and (2) Public Health England (PHE) laboratory data. Patient characteristics, cumulative incidence by modality (in-centre haemodialysis (ICHD), home HD, peritoneal dialysis (PD) and transplant), and 28-day survival were compared between the two sources. Results 2,783/54,795 patients (5.1%) had a positive test in the combined UKRR-PHE dataset. Of these 2,783, 87% had positive tests in both datasets. Capture was consistently high for PHE (> 95% across modalities) but varied for UKRR (ranging from ICHD 95% to transplant 78%, p < 0.0001). Patients captured only by PHE were more likely to be on transplant or home therapies (OR 3.5 95% CI [2.3–5.2] vs. ICHD) and to be infected in later months (OR 3.3 95%CI [2.4–4.6] for May-June, OR 6.5 95%CI [3.8–11.3] for July-August, vs. March-April), compared to patients in both datasets. Stratified by modality, patient characteristics and 28-day survival were similar between datasets. Conclusions For patients undergoing ICHD treatment the collection of data submitted directly by renal centres allows constant monitoring in real time. For other KRT modalities, using a national swab test dataset through frequent linkage may be the most effective method. Optimising central surveillance can improve patient care by informing interventions and assisting planning at local, regional and national levels. | ||
650 | 4 | |a COVID-19 |7 (dpeaa)DE-He213 | |
650 | 4 | |a ESKD |7 (dpeaa)DE-He213 | |
650 | 4 | |a Surveillance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Infection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dialysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a KRT |7 (dpeaa)DE-He213 | |
700 | 1 | |a Savino, Manuela |4 aut | |
700 | 1 | |a Benoy-Deeney, Fran |4 aut | |
700 | 1 | |a Steenkamp, Retha |4 aut | |
700 | 1 | |a Medcalf, James |4 aut | |
700 | 1 | |a Nitsch, Dorothea |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC nephrology |d London : BioMed Central, 2000 |g 24(2023), 1 vom: 08. Mai |w (DE-627)326643672 |w (DE-600)2041348-8 |x 1471-2369 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2023 |g number:1 |g day:08 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12882-023-03148-8 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 24 |j 2023 |e 1 |b 08 |c 05 |
author_variant |
s s ss m s ms f b d fbd r s rs j m jm d n dn |
---|---|
matchkey_str |
article:14712369:2023----::htaaolcinehdwrbsfroi1otrasrelacfrepeihnsaeinyiesaosrai |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s12882-023-03148-8 doi (DE-627)SPR052391361 (SPR)s12882-023-03148-8-e DE-627 ger DE-627 rakwb eng Santhakumaran, Shalini verfasserin aut What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-19 infections amongst KRT patients in England. Methods Adults receiving KRT in England were linked to two sources of data on positive COVID-19 tests recorded March-August 2020: (1) submissions from renal centres to the UK Renal Registry (UKRR) and (2) Public Health England (PHE) laboratory data. Patient characteristics, cumulative incidence by modality (in-centre haemodialysis (ICHD), home HD, peritoneal dialysis (PD) and transplant), and 28-day survival were compared between the two sources. Results 2,783/54,795 patients (5.1%) had a positive test in the combined UKRR-PHE dataset. Of these 2,783, 87% had positive tests in both datasets. Capture was consistently high for PHE (> 95% across modalities) but varied for UKRR (ranging from ICHD 95% to transplant 78%, p < 0.0001). Patients captured only by PHE were more likely to be on transplant or home therapies (OR 3.5 95% CI [2.3–5.2] vs. ICHD) and to be infected in later months (OR 3.3 95%CI [2.4–4.6] for May-June, OR 6.5 95%CI [3.8–11.3] for July-August, vs. March-April), compared to patients in both datasets. Stratified by modality, patient characteristics and 28-day survival were similar between datasets. Conclusions For patients undergoing ICHD treatment the collection of data submitted directly by renal centres allows constant monitoring in real time. For other KRT modalities, using a national swab test dataset through frequent linkage may be the most effective method. Optimising central surveillance can improve patient care by informing interventions and assisting planning at local, regional and national levels. COVID-19 (dpeaa)DE-He213 ESKD (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Infection (dpeaa)DE-He213 Dialysis (dpeaa)DE-He213 KRT (dpeaa)DE-He213 Savino, Manuela aut Benoy-Deeney, Fran aut Steenkamp, Retha aut Medcalf, James aut Nitsch, Dorothea aut Enthalten in BMC nephrology London : BioMed Central, 2000 24(2023), 1 vom: 08. Mai (DE-627)326643672 (DE-600)2041348-8 1471-2369 nnns volume:24 year:2023 number:1 day:08 month:05 https://dx.doi.org/10.1186/s12882-023-03148-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 08 05 |
spelling |
10.1186/s12882-023-03148-8 doi (DE-627)SPR052391361 (SPR)s12882-023-03148-8-e DE-627 ger DE-627 rakwb eng Santhakumaran, Shalini verfasserin aut What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-19 infections amongst KRT patients in England. Methods Adults receiving KRT in England were linked to two sources of data on positive COVID-19 tests recorded March-August 2020: (1) submissions from renal centres to the UK Renal Registry (UKRR) and (2) Public Health England (PHE) laboratory data. Patient characteristics, cumulative incidence by modality (in-centre haemodialysis (ICHD), home HD, peritoneal dialysis (PD) and transplant), and 28-day survival were compared between the two sources. Results 2,783/54,795 patients (5.1%) had a positive test in the combined UKRR-PHE dataset. Of these 2,783, 87% had positive tests in both datasets. Capture was consistently high for PHE (> 95% across modalities) but varied for UKRR (ranging from ICHD 95% to transplant 78%, p < 0.0001). Patients captured only by PHE were more likely to be on transplant or home therapies (OR 3.5 95% CI [2.3–5.2] vs. ICHD) and to be infected in later months (OR 3.3 95%CI [2.4–4.6] for May-June, OR 6.5 95%CI [3.8–11.3] for July-August, vs. March-April), compared to patients in both datasets. Stratified by modality, patient characteristics and 28-day survival were similar between datasets. Conclusions For patients undergoing ICHD treatment the collection of data submitted directly by renal centres allows constant monitoring in real time. For other KRT modalities, using a national swab test dataset through frequent linkage may be the most effective method. Optimising central surveillance can improve patient care by informing interventions and assisting planning at local, regional and national levels. COVID-19 (dpeaa)DE-He213 ESKD (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Infection (dpeaa)DE-He213 Dialysis (dpeaa)DE-He213 KRT (dpeaa)DE-He213 Savino, Manuela aut Benoy-Deeney, Fran aut Steenkamp, Retha aut Medcalf, James aut Nitsch, Dorothea aut Enthalten in BMC nephrology London : BioMed Central, 2000 24(2023), 1 vom: 08. Mai (DE-627)326643672 (DE-600)2041348-8 1471-2369 nnns volume:24 year:2023 number:1 day:08 month:05 https://dx.doi.org/10.1186/s12882-023-03148-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 08 05 |
allfields_unstemmed |
10.1186/s12882-023-03148-8 doi (DE-627)SPR052391361 (SPR)s12882-023-03148-8-e DE-627 ger DE-627 rakwb eng Santhakumaran, Shalini verfasserin aut What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-19 infections amongst KRT patients in England. Methods Adults receiving KRT in England were linked to two sources of data on positive COVID-19 tests recorded March-August 2020: (1) submissions from renal centres to the UK Renal Registry (UKRR) and (2) Public Health England (PHE) laboratory data. Patient characteristics, cumulative incidence by modality (in-centre haemodialysis (ICHD), home HD, peritoneal dialysis (PD) and transplant), and 28-day survival were compared between the two sources. Results 2,783/54,795 patients (5.1%) had a positive test in the combined UKRR-PHE dataset. Of these 2,783, 87% had positive tests in both datasets. Capture was consistently high for PHE (> 95% across modalities) but varied for UKRR (ranging from ICHD 95% to transplant 78%, p < 0.0001). Patients captured only by PHE were more likely to be on transplant or home therapies (OR 3.5 95% CI [2.3–5.2] vs. ICHD) and to be infected in later months (OR 3.3 95%CI [2.4–4.6] for May-June, OR 6.5 95%CI [3.8–11.3] for July-August, vs. March-April), compared to patients in both datasets. Stratified by modality, patient characteristics and 28-day survival were similar between datasets. Conclusions For patients undergoing ICHD treatment the collection of data submitted directly by renal centres allows constant monitoring in real time. For other KRT modalities, using a national swab test dataset through frequent linkage may be the most effective method. Optimising central surveillance can improve patient care by informing interventions and assisting planning at local, regional and national levels. COVID-19 (dpeaa)DE-He213 ESKD (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Infection (dpeaa)DE-He213 Dialysis (dpeaa)DE-He213 KRT (dpeaa)DE-He213 Savino, Manuela aut Benoy-Deeney, Fran aut Steenkamp, Retha aut Medcalf, James aut Nitsch, Dorothea aut Enthalten in BMC nephrology London : BioMed Central, 2000 24(2023), 1 vom: 08. Mai (DE-627)326643672 (DE-600)2041348-8 1471-2369 nnns volume:24 year:2023 number:1 day:08 month:05 https://dx.doi.org/10.1186/s12882-023-03148-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 08 05 |
allfieldsGer |
10.1186/s12882-023-03148-8 doi (DE-627)SPR052391361 (SPR)s12882-023-03148-8-e DE-627 ger DE-627 rakwb eng Santhakumaran, Shalini verfasserin aut What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-19 infections amongst KRT patients in England. Methods Adults receiving KRT in England were linked to two sources of data on positive COVID-19 tests recorded March-August 2020: (1) submissions from renal centres to the UK Renal Registry (UKRR) and (2) Public Health England (PHE) laboratory data. Patient characteristics, cumulative incidence by modality (in-centre haemodialysis (ICHD), home HD, peritoneal dialysis (PD) and transplant), and 28-day survival were compared between the two sources. Results 2,783/54,795 patients (5.1%) had a positive test in the combined UKRR-PHE dataset. Of these 2,783, 87% had positive tests in both datasets. Capture was consistently high for PHE (> 95% across modalities) but varied for UKRR (ranging from ICHD 95% to transplant 78%, p < 0.0001). Patients captured only by PHE were more likely to be on transplant or home therapies (OR 3.5 95% CI [2.3–5.2] vs. ICHD) and to be infected in later months (OR 3.3 95%CI [2.4–4.6] for May-June, OR 6.5 95%CI [3.8–11.3] for July-August, vs. March-April), compared to patients in both datasets. Stratified by modality, patient characteristics and 28-day survival were similar between datasets. Conclusions For patients undergoing ICHD treatment the collection of data submitted directly by renal centres allows constant monitoring in real time. For other KRT modalities, using a national swab test dataset through frequent linkage may be the most effective method. Optimising central surveillance can improve patient care by informing interventions and assisting planning at local, regional and national levels. COVID-19 (dpeaa)DE-He213 ESKD (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Infection (dpeaa)DE-He213 Dialysis (dpeaa)DE-He213 KRT (dpeaa)DE-He213 Savino, Manuela aut Benoy-Deeney, Fran aut Steenkamp, Retha aut Medcalf, James aut Nitsch, Dorothea aut Enthalten in BMC nephrology London : BioMed Central, 2000 24(2023), 1 vom: 08. Mai (DE-627)326643672 (DE-600)2041348-8 1471-2369 nnns volume:24 year:2023 number:1 day:08 month:05 https://dx.doi.org/10.1186/s12882-023-03148-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 08 05 |
allfieldsSound |
10.1186/s12882-023-03148-8 doi (DE-627)SPR052391361 (SPR)s12882-023-03148-8-e DE-627 ger DE-627 rakwb eng Santhakumaran, Shalini verfasserin aut What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-19 infections amongst KRT patients in England. Methods Adults receiving KRT in England were linked to two sources of data on positive COVID-19 tests recorded March-August 2020: (1) submissions from renal centres to the UK Renal Registry (UKRR) and (2) Public Health England (PHE) laboratory data. Patient characteristics, cumulative incidence by modality (in-centre haemodialysis (ICHD), home HD, peritoneal dialysis (PD) and transplant), and 28-day survival were compared between the two sources. Results 2,783/54,795 patients (5.1%) had a positive test in the combined UKRR-PHE dataset. Of these 2,783, 87% had positive tests in both datasets. Capture was consistently high for PHE (> 95% across modalities) but varied for UKRR (ranging from ICHD 95% to transplant 78%, p < 0.0001). Patients captured only by PHE were more likely to be on transplant or home therapies (OR 3.5 95% CI [2.3–5.2] vs. ICHD) and to be infected in later months (OR 3.3 95%CI [2.4–4.6] for May-June, OR 6.5 95%CI [3.8–11.3] for July-August, vs. March-April), compared to patients in both datasets. Stratified by modality, patient characteristics and 28-day survival were similar between datasets. Conclusions For patients undergoing ICHD treatment the collection of data submitted directly by renal centres allows constant monitoring in real time. For other KRT modalities, using a national swab test dataset through frequent linkage may be the most effective method. Optimising central surveillance can improve patient care by informing interventions and assisting planning at local, regional and national levels. COVID-19 (dpeaa)DE-He213 ESKD (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Infection (dpeaa)DE-He213 Dialysis (dpeaa)DE-He213 KRT (dpeaa)DE-He213 Savino, Manuela aut Benoy-Deeney, Fran aut Steenkamp, Retha aut Medcalf, James aut Nitsch, Dorothea aut Enthalten in BMC nephrology London : BioMed Central, 2000 24(2023), 1 vom: 08. Mai (DE-627)326643672 (DE-600)2041348-8 1471-2369 nnns volume:24 year:2023 number:1 day:08 month:05 https://dx.doi.org/10.1186/s12882-023-03148-8 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 24 2023 1 08 05 |
language |
English |
source |
Enthalten in BMC nephrology 24(2023), 1 vom: 08. Mai volume:24 year:2023 number:1 day:08 month:05 |
sourceStr |
Enthalten in BMC nephrology 24(2023), 1 vom: 08. Mai volume:24 year:2023 number:1 day:08 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
COVID-19 ESKD Surveillance Infection Dialysis KRT |
isfreeaccess_bool |
true |
container_title |
BMC nephrology |
authorswithroles_txt_mv |
Santhakumaran, Shalini @@aut@@ Savino, Manuela @@aut@@ Benoy-Deeney, Fran @@aut@@ Steenkamp, Retha @@aut@@ Medcalf, James @@aut@@ Nitsch, Dorothea @@aut@@ |
publishDateDaySort_date |
2023-05-08T00:00:00Z |
hierarchy_top_id |
326643672 |
id |
SPR052391361 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052391361</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230726102154.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230726s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12882-023-03148-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052391361</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12882-023-03148-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Santhakumaran, Shalini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-19 infections amongst KRT patients in England. Methods Adults receiving KRT in England were linked to two sources of data on positive COVID-19 tests recorded March-August 2020: (1) submissions from renal centres to the UK Renal Registry (UKRR) and (2) Public Health England (PHE) laboratory data. Patient characteristics, cumulative incidence by modality (in-centre haemodialysis (ICHD), home HD, peritoneal dialysis (PD) and transplant), and 28-day survival were compared between the two sources. Results 2,783/54,795 patients (5.1%) had a positive test in the combined UKRR-PHE dataset. Of these 2,783, 87% had positive tests in both datasets. Capture was consistently high for PHE (> 95% across modalities) but varied for UKRR (ranging from ICHD 95% to transplant 78%, p < 0.0001). Patients captured only by PHE were more likely to be on transplant or home therapies (OR 3.5 95% CI [2.3–5.2] vs. ICHD) and to be infected in later months (OR 3.3 95%CI [2.4–4.6] for May-June, OR 6.5 95%CI [3.8–11.3] for July-August, vs. March-April), compared to patients in both datasets. Stratified by modality, patient characteristics and 28-day survival were similar between datasets. Conclusions For patients undergoing ICHD treatment the collection of data submitted directly by renal centres allows constant monitoring in real time. For other KRT modalities, using a national swab test dataset through frequent linkage may be the most effective method. Optimising central surveillance can improve patient care by informing interventions and assisting planning at local, regional and national levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ESKD</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surveillance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dialysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">KRT</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savino, Manuela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Benoy-Deeney, Fran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steenkamp, Retha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medcalf, James</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nitsch, Dorothea</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC nephrology</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">24(2023), 1 vom: 08. Mai</subfield><subfield code="w">(DE-627)326643672</subfield><subfield code="w">(DE-600)2041348-8</subfield><subfield code="x">1471-2369</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12882-023-03148-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Santhakumaran, Shalini |
spellingShingle |
Santhakumaran, Shalini misc COVID-19 misc ESKD misc Surveillance misc Infection misc Dialysis misc KRT What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry |
authorStr |
Santhakumaran, Shalini |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643672 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2369 |
topic_title |
What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry COVID-19 (dpeaa)DE-He213 ESKD (dpeaa)DE-He213 Surveillance (dpeaa)DE-He213 Infection (dpeaa)DE-He213 Dialysis (dpeaa)DE-He213 KRT (dpeaa)DE-He213 |
topic |
misc COVID-19 misc ESKD misc Surveillance misc Infection misc Dialysis misc KRT |
topic_unstemmed |
misc COVID-19 misc ESKD misc Surveillance misc Infection misc Dialysis misc KRT |
topic_browse |
misc COVID-19 misc ESKD misc Surveillance misc Infection misc Dialysis misc KRT |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC nephrology |
hierarchy_parent_id |
326643672 |
hierarchy_top_title |
BMC nephrology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643672 (DE-600)2041348-8 |
title |
What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry |
ctrlnum |
(DE-627)SPR052391361 (SPR)s12882-023-03148-8-e |
title_full |
What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry |
author_sort |
Santhakumaran, Shalini |
journal |
BMC nephrology |
journalStr |
BMC nephrology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Santhakumaran, Shalini Savino, Manuela Benoy-Deeney, Fran Steenkamp, Retha Medcalf, James Nitsch, Dorothea |
container_volume |
24 |
format_se |
Elektronische Aufsätze |
author-letter |
Santhakumaran, Shalini |
doi_str_mv |
10.1186/s12882-023-03148-8 |
title_sort |
what data collection methods work best for covid19 outbreak surveillance for people with end stage kidney disease? an observational cohort study using the uk renal registry |
title_auth |
What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry |
abstract |
Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-19 infections amongst KRT patients in England. Methods Adults receiving KRT in England were linked to two sources of data on positive COVID-19 tests recorded March-August 2020: (1) submissions from renal centres to the UK Renal Registry (UKRR) and (2) Public Health England (PHE) laboratory data. Patient characteristics, cumulative incidence by modality (in-centre haemodialysis (ICHD), home HD, peritoneal dialysis (PD) and transplant), and 28-day survival were compared between the two sources. Results 2,783/54,795 patients (5.1%) had a positive test in the combined UKRR-PHE dataset. Of these 2,783, 87% had positive tests in both datasets. Capture was consistently high for PHE (> 95% across modalities) but varied for UKRR (ranging from ICHD 95% to transplant 78%, p < 0.0001). Patients captured only by PHE were more likely to be on transplant or home therapies (OR 3.5 95% CI [2.3–5.2] vs. ICHD) and to be infected in later months (OR 3.3 95%CI [2.4–4.6] for May-June, OR 6.5 95%CI [3.8–11.3] for July-August, vs. March-April), compared to patients in both datasets. Stratified by modality, patient characteristics and 28-day survival were similar between datasets. Conclusions For patients undergoing ICHD treatment the collection of data submitted directly by renal centres allows constant monitoring in real time. For other KRT modalities, using a national swab test dataset through frequent linkage may be the most effective method. Optimising central surveillance can improve patient care by informing interventions and assisting planning at local, regional and national levels. © The Author(s) 2023 |
abstractGer |
Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-19 infections amongst KRT patients in England. Methods Adults receiving KRT in England were linked to two sources of data on positive COVID-19 tests recorded March-August 2020: (1) submissions from renal centres to the UK Renal Registry (UKRR) and (2) Public Health England (PHE) laboratory data. Patient characteristics, cumulative incidence by modality (in-centre haemodialysis (ICHD), home HD, peritoneal dialysis (PD) and transplant), and 28-day survival were compared between the two sources. Results 2,783/54,795 patients (5.1%) had a positive test in the combined UKRR-PHE dataset. Of these 2,783, 87% had positive tests in both datasets. Capture was consistently high for PHE (> 95% across modalities) but varied for UKRR (ranging from ICHD 95% to transplant 78%, p < 0.0001). Patients captured only by PHE were more likely to be on transplant or home therapies (OR 3.5 95% CI [2.3–5.2] vs. ICHD) and to be infected in later months (OR 3.3 95%CI [2.4–4.6] for May-June, OR 6.5 95%CI [3.8–11.3] for July-August, vs. March-April), compared to patients in both datasets. Stratified by modality, patient characteristics and 28-day survival were similar between datasets. Conclusions For patients undergoing ICHD treatment the collection of data submitted directly by renal centres allows constant monitoring in real time. For other KRT modalities, using a national swab test dataset through frequent linkage may be the most effective method. Optimising central surveillance can improve patient care by informing interventions and assisting planning at local, regional and national levels. © The Author(s) 2023 |
abstract_unstemmed |
Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-19 infections amongst KRT patients in England. Methods Adults receiving KRT in England were linked to two sources of data on positive COVID-19 tests recorded March-August 2020: (1) submissions from renal centres to the UK Renal Registry (UKRR) and (2) Public Health England (PHE) laboratory data. Patient characteristics, cumulative incidence by modality (in-centre haemodialysis (ICHD), home HD, peritoneal dialysis (PD) and transplant), and 28-day survival were compared between the two sources. Results 2,783/54,795 patients (5.1%) had a positive test in the combined UKRR-PHE dataset. Of these 2,783, 87% had positive tests in both datasets. Capture was consistently high for PHE (> 95% across modalities) but varied for UKRR (ranging from ICHD 95% to transplant 78%, p < 0.0001). Patients captured only by PHE were more likely to be on transplant or home therapies (OR 3.5 95% CI [2.3–5.2] vs. ICHD) and to be infected in later months (OR 3.3 95%CI [2.4–4.6] for May-June, OR 6.5 95%CI [3.8–11.3] for July-August, vs. March-April), compared to patients in both datasets. Stratified by modality, patient characteristics and 28-day survival were similar between datasets. Conclusions For patients undergoing ICHD treatment the collection of data submitted directly by renal centres allows constant monitoring in real time. For other KRT modalities, using a national swab test dataset through frequent linkage may be the most effective method. Optimising central surveillance can improve patient care by informing interventions and assisting planning at local, regional and national levels. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry |
url |
https://dx.doi.org/10.1186/s12882-023-03148-8 |
remote_bool |
true |
author2 |
Savino, Manuela Benoy-Deeney, Fran Steenkamp, Retha Medcalf, James Nitsch, Dorothea |
author2Str |
Savino, Manuela Benoy-Deeney, Fran Steenkamp, Retha Medcalf, James Nitsch, Dorothea |
ppnlink |
326643672 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12882-023-03148-8 |
up_date |
2024-07-04T02:37:42.462Z |
_version_ |
1803614329201754112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052391361</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230726102154.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230726s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12882-023-03148-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052391361</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12882-023-03148-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Santhakumaran, Shalini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">What data collection methods work best for COVID19 outbreak surveillance for people with end stage kidney disease? An observational cohort study using the UK Renal Registry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Patients on kidney replacement therapy (KRT) are vulnerable to severe illness from COVID-19. Timely, accurate surveillance is essential for planning and implementing infection control at local, regional and national levels. Our aim was to compare two methods of data collection for COVID-19 infections amongst KRT patients in England. Methods Adults receiving KRT in England were linked to two sources of data on positive COVID-19 tests recorded March-August 2020: (1) submissions from renal centres to the UK Renal Registry (UKRR) and (2) Public Health England (PHE) laboratory data. Patient characteristics, cumulative incidence by modality (in-centre haemodialysis (ICHD), home HD, peritoneal dialysis (PD) and transplant), and 28-day survival were compared between the two sources. Results 2,783/54,795 patients (5.1%) had a positive test in the combined UKRR-PHE dataset. Of these 2,783, 87% had positive tests in both datasets. Capture was consistently high for PHE (> 95% across modalities) but varied for UKRR (ranging from ICHD 95% to transplant 78%, p < 0.0001). Patients captured only by PHE were more likely to be on transplant or home therapies (OR 3.5 95% CI [2.3–5.2] vs. ICHD) and to be infected in later months (OR 3.3 95%CI [2.4–4.6] for May-June, OR 6.5 95%CI [3.8–11.3] for July-August, vs. March-April), compared to patients in both datasets. Stratified by modality, patient characteristics and 28-day survival were similar between datasets. Conclusions For patients undergoing ICHD treatment the collection of data submitted directly by renal centres allows constant monitoring in real time. For other KRT modalities, using a national swab test dataset through frequent linkage may be the most effective method. Optimising central surveillance can improve patient care by informing interventions and assisting planning at local, regional and national levels.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ESKD</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surveillance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dialysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">KRT</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savino, Manuela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Benoy-Deeney, Fran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steenkamp, Retha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medcalf, James</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nitsch, Dorothea</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC nephrology</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">24(2023), 1 vom: 08. Mai</subfield><subfield code="w">(DE-627)326643672</subfield><subfield code="w">(DE-600)2041348-8</subfield><subfield code="x">1471-2369</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12882-023-03148-8</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.401598 |