SoftClusterMix: learning soft boundaries for empirical risk minimization

Abstract Deep convolutional networks are data hungry learners and, to compensate for the limited amount of available data, various augmentation methods have been proposed. While the initial approaches aimed to fill the space around existing data points, more recent methods use the “mixing” procedure...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Florea, Corneliu [verfasserIn]

Vertan, Constantin

Florea, Laura

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Deep networks

Embedding

Margin

Soft-labeling

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Neural computing & applications - London : Springer, 1993, 35(2023), 16 vom: 14. Feb., Seite 12039-12053

Übergeordnetes Werk:

volume:35 ; year:2023 ; number:16 ; day:14 ; month:02 ; pages:12039-12053

Links:

Volltext

DOI / URN:

10.1007/s00521-023-08338-x

Katalog-ID:

SPR052398013

Nicht das Richtige dabei?

Schreiben Sie uns!