Initialization for non-negative matrix factorization: a comprehensive review

Abstract Non-negative matrix factorization (NMF) has become a popular method for representing meaningful data by extracting a non-negative basis feature from an observed non-negative data matrix. Some of the unique features of this method in identifying hidden data place this method among the powerf...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Fathi Hafshejani, Sajad [verfasserIn]

Moaberfard, Zahra

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Non-negative matrix factorization

Initialization algorithms

Anmerkung:

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: International journal of data science and analytics - Cham, Switzerland : Springer International Publishing, 2016, 16(2022), 1 vom: 11. Nov., Seite 119-134

Übergeordnetes Werk:

volume:16 ; year:2022 ; number:1 ; day:11 ; month:11 ; pages:119-134

Links:

Volltext

DOI / URN:

10.1007/s41060-022-00370-9

Katalog-ID:

SPR052409937

Nicht das Richtige dabei?

Schreiben Sie uns!