Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia
Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hill...
Ausführliche Beschreibung
Autor*in: |
Bekele, Addisu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Modeling earth systems and environment - Berlin : Springer, 2015, 9(2022), 2 vom: 24. Okt., Seite 1559-1585 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2022 ; number:2 ; day:24 ; month:10 ; pages:1559-1585 |
Links: |
---|
DOI / URN: |
10.1007/s40808-022-01563-8 |
---|
Katalog-ID: |
SPR05250770X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR05250770X | ||
003 | DE-627 | ||
005 | 20230726104858.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230726s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s40808-022-01563-8 |2 doi | |
035 | |a (DE-627)SPR05250770X | ||
035 | |a (SPR)s40808-022-01563-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Bekele, Addisu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hills and deep valleys/gorges. The purpose of this study is to identify and model the stability of selected rock slope sections along the road. For this, a detailed field investigation, including discontinuity survey, in situ rock testing, rock sampling, measuring slope geometry, and orientation, were carried out. From field observations, eight critical rock slope sections were identified for stability modeling using kinematic, limit equilibrium and finite-element methods. Kinematic modeling, which was performed with dips software, showed wedge and toppling modes of failures at slope sections RSS1 and RSS4, respectively, while planar mode of failure for RSS5 and RSS7. Moreover, limit equilibrium method (LEM) and finite-element method (FEM) models were used to determine the factor of safety (FoS) and the stress reduction factor (SRF), respectively, using Swedge, Rocplane, and Roctopple softwares for wedge, planar, and toppling failures, respectively. These modeling approaches were conducted for static dry, static saturated, dynamic dry, and dynamic saturated conditions. The modeling results at these critical rock slope sections showed that these slopes are stable if FoS/SRF > 1 and unstable if FoS/SRF < 1. The performance of remedial measures at different slope profiles based on LEM modeling showed that reducing the slope angle, slope height, and benching a slope have improved the overall stability of rock slopes. Moreover, this study also recommends the application of shotcrete, rock bolts, anchors, and retaining walls to prevent the failure of the critical rock slope sections along the road. | ||
650 | 4 | |a Slope stability modeling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Factor of safety |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stress reduction factor |7 (dpeaa)DE-He213 | |
650 | 4 | |a Kinematic method |7 (dpeaa)DE-He213 | |
650 | 4 | |a Limit equilibrium method |7 (dpeaa)DE-He213 | |
650 | 4 | |a Finite-element method |7 (dpeaa)DE-He213 | |
700 | 1 | |a Meten, Matebie |0 (orcid)0000-0002-1529-190X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Modeling earth systems and environment |d Berlin : Springer, 2015 |g 9(2022), 2 vom: 24. Okt., Seite 1559-1585 |w (DE-627)825736587 |w (DE-600)2821317-8 |x 2363-6211 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2022 |g number:2 |g day:24 |g month:10 |g pages:1559-1585 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s40808-022-01563-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 9 |j 2022 |e 2 |b 24 |c 10 |h 1559-1585 |
author_variant |
a b ab m m mm |
---|---|
matchkey_str |
article:23636211:2022----::oeigoklpsaiiysnknmtciieulbimnfnteeetehdaogetlm |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s40808-022-01563-8 doi (DE-627)SPR05250770X (SPR)s40808-022-01563-8-e DE-627 ger DE-627 rakwb eng Bekele, Addisu verfasserin aut Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hills and deep valleys/gorges. The purpose of this study is to identify and model the stability of selected rock slope sections along the road. For this, a detailed field investigation, including discontinuity survey, in situ rock testing, rock sampling, measuring slope geometry, and orientation, were carried out. From field observations, eight critical rock slope sections were identified for stability modeling using kinematic, limit equilibrium and finite-element methods. Kinematic modeling, which was performed with dips software, showed wedge and toppling modes of failures at slope sections RSS1 and RSS4, respectively, while planar mode of failure for RSS5 and RSS7. Moreover, limit equilibrium method (LEM) and finite-element method (FEM) models were used to determine the factor of safety (FoS) and the stress reduction factor (SRF), respectively, using Swedge, Rocplane, and Roctopple softwares for wedge, planar, and toppling failures, respectively. These modeling approaches were conducted for static dry, static saturated, dynamic dry, and dynamic saturated conditions. The modeling results at these critical rock slope sections showed that these slopes are stable if FoS/SRF > 1 and unstable if FoS/SRF < 1. The performance of remedial measures at different slope profiles based on LEM modeling showed that reducing the slope angle, slope height, and benching a slope have improved the overall stability of rock slopes. Moreover, this study also recommends the application of shotcrete, rock bolts, anchors, and retaining walls to prevent the failure of the critical rock slope sections along the road. Slope stability modeling (dpeaa)DE-He213 Factor of safety (dpeaa)DE-He213 Stress reduction factor (dpeaa)DE-He213 Kinematic method (dpeaa)DE-He213 Limit equilibrium method (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 Meten, Matebie (orcid)0000-0002-1529-190X aut Enthalten in Modeling earth systems and environment Berlin : Springer, 2015 9(2022), 2 vom: 24. Okt., Seite 1559-1585 (DE-627)825736587 (DE-600)2821317-8 2363-6211 nnns volume:9 year:2022 number:2 day:24 month:10 pages:1559-1585 https://dx.doi.org/10.1007/s40808-022-01563-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 9 2022 2 24 10 1559-1585 |
spelling |
10.1007/s40808-022-01563-8 doi (DE-627)SPR05250770X (SPR)s40808-022-01563-8-e DE-627 ger DE-627 rakwb eng Bekele, Addisu verfasserin aut Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hills and deep valleys/gorges. The purpose of this study is to identify and model the stability of selected rock slope sections along the road. For this, a detailed field investigation, including discontinuity survey, in situ rock testing, rock sampling, measuring slope geometry, and orientation, were carried out. From field observations, eight critical rock slope sections were identified for stability modeling using kinematic, limit equilibrium and finite-element methods. Kinematic modeling, which was performed with dips software, showed wedge and toppling modes of failures at slope sections RSS1 and RSS4, respectively, while planar mode of failure for RSS5 and RSS7. Moreover, limit equilibrium method (LEM) and finite-element method (FEM) models were used to determine the factor of safety (FoS) and the stress reduction factor (SRF), respectively, using Swedge, Rocplane, and Roctopple softwares for wedge, planar, and toppling failures, respectively. These modeling approaches were conducted for static dry, static saturated, dynamic dry, and dynamic saturated conditions. The modeling results at these critical rock slope sections showed that these slopes are stable if FoS/SRF > 1 and unstable if FoS/SRF < 1. The performance of remedial measures at different slope profiles based on LEM modeling showed that reducing the slope angle, slope height, and benching a slope have improved the overall stability of rock slopes. Moreover, this study also recommends the application of shotcrete, rock bolts, anchors, and retaining walls to prevent the failure of the critical rock slope sections along the road. Slope stability modeling (dpeaa)DE-He213 Factor of safety (dpeaa)DE-He213 Stress reduction factor (dpeaa)DE-He213 Kinematic method (dpeaa)DE-He213 Limit equilibrium method (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 Meten, Matebie (orcid)0000-0002-1529-190X aut Enthalten in Modeling earth systems and environment Berlin : Springer, 2015 9(2022), 2 vom: 24. Okt., Seite 1559-1585 (DE-627)825736587 (DE-600)2821317-8 2363-6211 nnns volume:9 year:2022 number:2 day:24 month:10 pages:1559-1585 https://dx.doi.org/10.1007/s40808-022-01563-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 9 2022 2 24 10 1559-1585 |
allfields_unstemmed |
10.1007/s40808-022-01563-8 doi (DE-627)SPR05250770X (SPR)s40808-022-01563-8-e DE-627 ger DE-627 rakwb eng Bekele, Addisu verfasserin aut Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hills and deep valleys/gorges. The purpose of this study is to identify and model the stability of selected rock slope sections along the road. For this, a detailed field investigation, including discontinuity survey, in situ rock testing, rock sampling, measuring slope geometry, and orientation, were carried out. From field observations, eight critical rock slope sections were identified for stability modeling using kinematic, limit equilibrium and finite-element methods. Kinematic modeling, which was performed with dips software, showed wedge and toppling modes of failures at slope sections RSS1 and RSS4, respectively, while planar mode of failure for RSS5 and RSS7. Moreover, limit equilibrium method (LEM) and finite-element method (FEM) models were used to determine the factor of safety (FoS) and the stress reduction factor (SRF), respectively, using Swedge, Rocplane, and Roctopple softwares for wedge, planar, and toppling failures, respectively. These modeling approaches were conducted for static dry, static saturated, dynamic dry, and dynamic saturated conditions. The modeling results at these critical rock slope sections showed that these slopes are stable if FoS/SRF > 1 and unstable if FoS/SRF < 1. The performance of remedial measures at different slope profiles based on LEM modeling showed that reducing the slope angle, slope height, and benching a slope have improved the overall stability of rock slopes. Moreover, this study also recommends the application of shotcrete, rock bolts, anchors, and retaining walls to prevent the failure of the critical rock slope sections along the road. Slope stability modeling (dpeaa)DE-He213 Factor of safety (dpeaa)DE-He213 Stress reduction factor (dpeaa)DE-He213 Kinematic method (dpeaa)DE-He213 Limit equilibrium method (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 Meten, Matebie (orcid)0000-0002-1529-190X aut Enthalten in Modeling earth systems and environment Berlin : Springer, 2015 9(2022), 2 vom: 24. Okt., Seite 1559-1585 (DE-627)825736587 (DE-600)2821317-8 2363-6211 nnns volume:9 year:2022 number:2 day:24 month:10 pages:1559-1585 https://dx.doi.org/10.1007/s40808-022-01563-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 9 2022 2 24 10 1559-1585 |
allfieldsGer |
10.1007/s40808-022-01563-8 doi (DE-627)SPR05250770X (SPR)s40808-022-01563-8-e DE-627 ger DE-627 rakwb eng Bekele, Addisu verfasserin aut Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hills and deep valleys/gorges. The purpose of this study is to identify and model the stability of selected rock slope sections along the road. For this, a detailed field investigation, including discontinuity survey, in situ rock testing, rock sampling, measuring slope geometry, and orientation, were carried out. From field observations, eight critical rock slope sections were identified for stability modeling using kinematic, limit equilibrium and finite-element methods. Kinematic modeling, which was performed with dips software, showed wedge and toppling modes of failures at slope sections RSS1 and RSS4, respectively, while planar mode of failure for RSS5 and RSS7. Moreover, limit equilibrium method (LEM) and finite-element method (FEM) models were used to determine the factor of safety (FoS) and the stress reduction factor (SRF), respectively, using Swedge, Rocplane, and Roctopple softwares for wedge, planar, and toppling failures, respectively. These modeling approaches were conducted for static dry, static saturated, dynamic dry, and dynamic saturated conditions. The modeling results at these critical rock slope sections showed that these slopes are stable if FoS/SRF > 1 and unstable if FoS/SRF < 1. The performance of remedial measures at different slope profiles based on LEM modeling showed that reducing the slope angle, slope height, and benching a slope have improved the overall stability of rock slopes. Moreover, this study also recommends the application of shotcrete, rock bolts, anchors, and retaining walls to prevent the failure of the critical rock slope sections along the road. Slope stability modeling (dpeaa)DE-He213 Factor of safety (dpeaa)DE-He213 Stress reduction factor (dpeaa)DE-He213 Kinematic method (dpeaa)DE-He213 Limit equilibrium method (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 Meten, Matebie (orcid)0000-0002-1529-190X aut Enthalten in Modeling earth systems and environment Berlin : Springer, 2015 9(2022), 2 vom: 24. Okt., Seite 1559-1585 (DE-627)825736587 (DE-600)2821317-8 2363-6211 nnns volume:9 year:2022 number:2 day:24 month:10 pages:1559-1585 https://dx.doi.org/10.1007/s40808-022-01563-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 9 2022 2 24 10 1559-1585 |
allfieldsSound |
10.1007/s40808-022-01563-8 doi (DE-627)SPR05250770X (SPR)s40808-022-01563-8-e DE-627 ger DE-627 rakwb eng Bekele, Addisu verfasserin aut Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia 2022 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hills and deep valleys/gorges. The purpose of this study is to identify and model the stability of selected rock slope sections along the road. For this, a detailed field investigation, including discontinuity survey, in situ rock testing, rock sampling, measuring slope geometry, and orientation, were carried out. From field observations, eight critical rock slope sections were identified for stability modeling using kinematic, limit equilibrium and finite-element methods. Kinematic modeling, which was performed with dips software, showed wedge and toppling modes of failures at slope sections RSS1 and RSS4, respectively, while planar mode of failure for RSS5 and RSS7. Moreover, limit equilibrium method (LEM) and finite-element method (FEM) models were used to determine the factor of safety (FoS) and the stress reduction factor (SRF), respectively, using Swedge, Rocplane, and Roctopple softwares for wedge, planar, and toppling failures, respectively. These modeling approaches were conducted for static dry, static saturated, dynamic dry, and dynamic saturated conditions. The modeling results at these critical rock slope sections showed that these slopes are stable if FoS/SRF > 1 and unstable if FoS/SRF < 1. The performance of remedial measures at different slope profiles based on LEM modeling showed that reducing the slope angle, slope height, and benching a slope have improved the overall stability of rock slopes. Moreover, this study also recommends the application of shotcrete, rock bolts, anchors, and retaining walls to prevent the failure of the critical rock slope sections along the road. Slope stability modeling (dpeaa)DE-He213 Factor of safety (dpeaa)DE-He213 Stress reduction factor (dpeaa)DE-He213 Kinematic method (dpeaa)DE-He213 Limit equilibrium method (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 Meten, Matebie (orcid)0000-0002-1529-190X aut Enthalten in Modeling earth systems and environment Berlin : Springer, 2015 9(2022), 2 vom: 24. Okt., Seite 1559-1585 (DE-627)825736587 (DE-600)2821317-8 2363-6211 nnns volume:9 year:2022 number:2 day:24 month:10 pages:1559-1585 https://dx.doi.org/10.1007/s40808-022-01563-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 9 2022 2 24 10 1559-1585 |
language |
English |
source |
Enthalten in Modeling earth systems and environment 9(2022), 2 vom: 24. Okt., Seite 1559-1585 volume:9 year:2022 number:2 day:24 month:10 pages:1559-1585 |
sourceStr |
Enthalten in Modeling earth systems and environment 9(2022), 2 vom: 24. Okt., Seite 1559-1585 volume:9 year:2022 number:2 day:24 month:10 pages:1559-1585 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Slope stability modeling Factor of safety Stress reduction factor Kinematic method Limit equilibrium method Finite-element method |
isfreeaccess_bool |
false |
container_title |
Modeling earth systems and environment |
authorswithroles_txt_mv |
Bekele, Addisu @@aut@@ Meten, Matebie @@aut@@ |
publishDateDaySort_date |
2022-10-24T00:00:00Z |
hierarchy_top_id |
825736587 |
id |
SPR05250770X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05250770X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230726104858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230726s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40808-022-01563-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05250770X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40808-022-01563-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bekele, Addisu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hills and deep valleys/gorges. The purpose of this study is to identify and model the stability of selected rock slope sections along the road. For this, a detailed field investigation, including discontinuity survey, in situ rock testing, rock sampling, measuring slope geometry, and orientation, were carried out. From field observations, eight critical rock slope sections were identified for stability modeling using kinematic, limit equilibrium and finite-element methods. Kinematic modeling, which was performed with dips software, showed wedge and toppling modes of failures at slope sections RSS1 and RSS4, respectively, while planar mode of failure for RSS5 and RSS7. Moreover, limit equilibrium method (LEM) and finite-element method (FEM) models were used to determine the factor of safety (FoS) and the stress reduction factor (SRF), respectively, using Swedge, Rocplane, and Roctopple softwares for wedge, planar, and toppling failures, respectively. These modeling approaches were conducted for static dry, static saturated, dynamic dry, and dynamic saturated conditions. The modeling results at these critical rock slope sections showed that these slopes are stable if FoS/SRF > 1 and unstable if FoS/SRF < 1. The performance of remedial measures at different slope profiles based on LEM modeling showed that reducing the slope angle, slope height, and benching a slope have improved the overall stability of rock slopes. Moreover, this study also recommends the application of shotcrete, rock bolts, anchors, and retaining walls to prevent the failure of the critical rock slope sections along the road.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slope stability modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factor of safety</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress reduction factor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinematic method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limit equilibrium method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-element method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meten, Matebie</subfield><subfield code="0">(orcid)0000-0002-1529-190X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Modeling earth systems and environment</subfield><subfield code="d">Berlin : Springer, 2015</subfield><subfield code="g">9(2022), 2 vom: 24. Okt., Seite 1559-1585</subfield><subfield code="w">(DE-627)825736587</subfield><subfield code="w">(DE-600)2821317-8</subfield><subfield code="x">2363-6211</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:24</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1559-1585</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40808-022-01563-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">24</subfield><subfield code="c">10</subfield><subfield code="h">1559-1585</subfield></datafield></record></collection>
|
author |
Bekele, Addisu |
spellingShingle |
Bekele, Addisu misc Slope stability modeling misc Factor of safety misc Stress reduction factor misc Kinematic method misc Limit equilibrium method misc Finite-element method Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia |
authorStr |
Bekele, Addisu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)825736587 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2363-6211 |
topic_title |
Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia Slope stability modeling (dpeaa)DE-He213 Factor of safety (dpeaa)DE-He213 Stress reduction factor (dpeaa)DE-He213 Kinematic method (dpeaa)DE-He213 Limit equilibrium method (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 |
topic |
misc Slope stability modeling misc Factor of safety misc Stress reduction factor misc Kinematic method misc Limit equilibrium method misc Finite-element method |
topic_unstemmed |
misc Slope stability modeling misc Factor of safety misc Stress reduction factor misc Kinematic method misc Limit equilibrium method misc Finite-element method |
topic_browse |
misc Slope stability modeling misc Factor of safety misc Stress reduction factor misc Kinematic method misc Limit equilibrium method misc Finite-element method |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Modeling earth systems and environment |
hierarchy_parent_id |
825736587 |
hierarchy_top_title |
Modeling earth systems and environment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)825736587 (DE-600)2821317-8 |
title |
Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia |
ctrlnum |
(DE-627)SPR05250770X (SPR)s40808-022-01563-8-e |
title_full |
Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia |
author_sort |
Bekele, Addisu |
journal |
Modeling earth systems and environment |
journalStr |
Modeling earth systems and environment |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1559 |
author_browse |
Bekele, Addisu Meten, Matebie |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Bekele, Addisu |
doi_str_mv |
10.1007/s40808-022-01563-8 |
normlink |
(ORCID)0000-0002-1529-190X |
normlink_prefix_str_mv |
(orcid)0000-0002-1529-190X |
title_sort |
modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along mertule maryam–mekane selam road, central ethiopia |
title_auth |
Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia |
abstract |
Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hills and deep valleys/gorges. The purpose of this study is to identify and model the stability of selected rock slope sections along the road. For this, a detailed field investigation, including discontinuity survey, in situ rock testing, rock sampling, measuring slope geometry, and orientation, were carried out. From field observations, eight critical rock slope sections were identified for stability modeling using kinematic, limit equilibrium and finite-element methods. Kinematic modeling, which was performed with dips software, showed wedge and toppling modes of failures at slope sections RSS1 and RSS4, respectively, while planar mode of failure for RSS5 and RSS7. Moreover, limit equilibrium method (LEM) and finite-element method (FEM) models were used to determine the factor of safety (FoS) and the stress reduction factor (SRF), respectively, using Swedge, Rocplane, and Roctopple softwares for wedge, planar, and toppling failures, respectively. These modeling approaches were conducted for static dry, static saturated, dynamic dry, and dynamic saturated conditions. The modeling results at these critical rock slope sections showed that these slopes are stable if FoS/SRF > 1 and unstable if FoS/SRF < 1. The performance of remedial measures at different slope profiles based on LEM modeling showed that reducing the slope angle, slope height, and benching a slope have improved the overall stability of rock slopes. Moreover, this study also recommends the application of shotcrete, rock bolts, anchors, and retaining walls to prevent the failure of the critical rock slope sections along the road. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hills and deep valleys/gorges. The purpose of this study is to identify and model the stability of selected rock slope sections along the road. For this, a detailed field investigation, including discontinuity survey, in situ rock testing, rock sampling, measuring slope geometry, and orientation, were carried out. From field observations, eight critical rock slope sections were identified for stability modeling using kinematic, limit equilibrium and finite-element methods. Kinematic modeling, which was performed with dips software, showed wedge and toppling modes of failures at slope sections RSS1 and RSS4, respectively, while planar mode of failure for RSS5 and RSS7. Moreover, limit equilibrium method (LEM) and finite-element method (FEM) models were used to determine the factor of safety (FoS) and the stress reduction factor (SRF), respectively, using Swedge, Rocplane, and Roctopple softwares for wedge, planar, and toppling failures, respectively. These modeling approaches were conducted for static dry, static saturated, dynamic dry, and dynamic saturated conditions. The modeling results at these critical rock slope sections showed that these slopes are stable if FoS/SRF > 1 and unstable if FoS/SRF < 1. The performance of remedial measures at different slope profiles based on LEM modeling showed that reducing the slope angle, slope height, and benching a slope have improved the overall stability of rock slopes. Moreover, this study also recommends the application of shotcrete, rock bolts, anchors, and retaining walls to prevent the failure of the critical rock slope sections along the road. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hills and deep valleys/gorges. The purpose of this study is to identify and model the stability of selected rock slope sections along the road. For this, a detailed field investigation, including discontinuity survey, in situ rock testing, rock sampling, measuring slope geometry, and orientation, were carried out. From field observations, eight critical rock slope sections were identified for stability modeling using kinematic, limit equilibrium and finite-element methods. Kinematic modeling, which was performed with dips software, showed wedge and toppling modes of failures at slope sections RSS1 and RSS4, respectively, while planar mode of failure for RSS5 and RSS7. Moreover, limit equilibrium method (LEM) and finite-element method (FEM) models were used to determine the factor of safety (FoS) and the stress reduction factor (SRF), respectively, using Swedge, Rocplane, and Roctopple softwares for wedge, planar, and toppling failures, respectively. These modeling approaches were conducted for static dry, static saturated, dynamic dry, and dynamic saturated conditions. The modeling results at these critical rock slope sections showed that these slopes are stable if FoS/SRF > 1 and unstable if FoS/SRF < 1. The performance of remedial measures at different slope profiles based on LEM modeling showed that reducing the slope angle, slope height, and benching a slope have improved the overall stability of rock slopes. Moreover, this study also recommends the application of shotcrete, rock bolts, anchors, and retaining walls to prevent the failure of the critical rock slope sections along the road. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia |
url |
https://dx.doi.org/10.1007/s40808-022-01563-8 |
remote_bool |
true |
author2 |
Meten, Matebie |
author2Str |
Meten, Matebie |
ppnlink |
825736587 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s40808-022-01563-8 |
up_date |
2024-07-04T03:02:17.729Z |
_version_ |
1803615876134469632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05250770X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230726104858.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230726s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s40808-022-01563-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05250770X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s40808-022-01563-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bekele, Addisu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling rock slope stability using kinematic, limit equilibrium and finite-element methods along Mertule Maryam–Mekane Selam road, central Ethiopia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Corrected Publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Slope failures are among the most common natural geohazards in the world’s hilly and mountainous terrains causing loss of life and damage to infrastructures. The road connecting Mertule Maryam and Mekane Selam towns in central Ethiopia passes through extremely rugged terrain with steep hills and deep valleys/gorges. The purpose of this study is to identify and model the stability of selected rock slope sections along the road. For this, a detailed field investigation, including discontinuity survey, in situ rock testing, rock sampling, measuring slope geometry, and orientation, were carried out. From field observations, eight critical rock slope sections were identified for stability modeling using kinematic, limit equilibrium and finite-element methods. Kinematic modeling, which was performed with dips software, showed wedge and toppling modes of failures at slope sections RSS1 and RSS4, respectively, while planar mode of failure for RSS5 and RSS7. Moreover, limit equilibrium method (LEM) and finite-element method (FEM) models were used to determine the factor of safety (FoS) and the stress reduction factor (SRF), respectively, using Swedge, Rocplane, and Roctopple softwares for wedge, planar, and toppling failures, respectively. These modeling approaches were conducted for static dry, static saturated, dynamic dry, and dynamic saturated conditions. The modeling results at these critical rock slope sections showed that these slopes are stable if FoS/SRF > 1 and unstable if FoS/SRF < 1. The performance of remedial measures at different slope profiles based on LEM modeling showed that reducing the slope angle, slope height, and benching a slope have improved the overall stability of rock slopes. Moreover, this study also recommends the application of shotcrete, rock bolts, anchors, and retaining walls to prevent the failure of the critical rock slope sections along the road.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slope stability modeling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Factor of safety</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress reduction factor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinematic method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Limit equilibrium method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-element method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meten, Matebie</subfield><subfield code="0">(orcid)0000-0002-1529-190X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Modeling earth systems and environment</subfield><subfield code="d">Berlin : Springer, 2015</subfield><subfield code="g">9(2022), 2 vom: 24. Okt., Seite 1559-1585</subfield><subfield code="w">(DE-627)825736587</subfield><subfield code="w">(DE-600)2821317-8</subfield><subfield code="x">2363-6211</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:24</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1559-1585</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s40808-022-01563-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">24</subfield><subfield code="c">10</subfield><subfield code="h">1559-1585</subfield></datafield></record></collection>
|
score |
7.4024687 |