The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals
Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data t...
Ausführliche Beschreibung
Autor*in: |
Bromiley, Geoffrey David [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023. corrected publication 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Earth, moon and planets - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969, 127(2023), 2 vom: 31. Juli |
---|---|
Übergeordnetes Werk: |
volume:127 ; year:2023 ; number:2 ; day:31 ; month:07 |
Links: |
---|
DOI / URN: |
10.1007/s11038-023-09552-2 |
---|
Katalog-ID: |
SPR052591255 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR052591255 | ||
003 | DE-627 | ||
005 | 20231018064656.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230801s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11038-023-09552-2 |2 doi | |
035 | |a (DE-627)SPR052591255 | ||
035 | |a (SPR)s11038-023-09552-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Bromiley, Geoffrey David |e verfasserin |0 (orcid)0000-0002-2999-4235 |4 aut | |
245 | 1 | 4 | |a The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023. corrected publication 2023 | ||
520 | |a Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting. | ||
650 | 4 | |a Planetesimal |7 (dpeaa)DE-He213 | |
650 | 4 | |a Core-formation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Percolation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Metal |7 (dpeaa)DE-He213 | |
650 | 4 | |a Silicate |7 (dpeaa)DE-He213 | |
650 | 4 | |a Differentiation |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Earth, moon and planets |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 |g 127(2023), 2 vom: 31. Juli |w (DE-627)268757518 |w (DE-600)1472717-1 |x 1573-0794 |7 nnns |
773 | 1 | 8 | |g volume:127 |g year:2023 |g number:2 |g day:31 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11038-023-09552-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 127 |j 2023 |e 2 |b 31 |c 07 |
author_variant |
g d b gd gdb |
---|---|
matchkey_str |
article:15730794:2023----::hgohmcleayfotmeaueecltodiecrfr |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11038-023-09552-2 doi (DE-627)SPR052591255 (SPR)s11038-023-09552-2-e DE-627 ger DE-627 rakwb eng Bromiley, Geoffrey David verfasserin (orcid)0000-0002-2999-4235 aut The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023. corrected publication 2023 Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting. Planetesimal (dpeaa)DE-He213 Core-formation (dpeaa)DE-He213 Percolation (dpeaa)DE-He213 Metal (dpeaa)DE-He213 Silicate (dpeaa)DE-He213 Differentiation (dpeaa)DE-He213 Enthalten in Earth, moon and planets Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 127(2023), 2 vom: 31. Juli (DE-627)268757518 (DE-600)1472717-1 1573-0794 nnns volume:127 year:2023 number:2 day:31 month:07 https://dx.doi.org/10.1007/s11038-023-09552-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 127 2023 2 31 07 |
spelling |
10.1007/s11038-023-09552-2 doi (DE-627)SPR052591255 (SPR)s11038-023-09552-2-e DE-627 ger DE-627 rakwb eng Bromiley, Geoffrey David verfasserin (orcid)0000-0002-2999-4235 aut The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023. corrected publication 2023 Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting. Planetesimal (dpeaa)DE-He213 Core-formation (dpeaa)DE-He213 Percolation (dpeaa)DE-He213 Metal (dpeaa)DE-He213 Silicate (dpeaa)DE-He213 Differentiation (dpeaa)DE-He213 Enthalten in Earth, moon and planets Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 127(2023), 2 vom: 31. Juli (DE-627)268757518 (DE-600)1472717-1 1573-0794 nnns volume:127 year:2023 number:2 day:31 month:07 https://dx.doi.org/10.1007/s11038-023-09552-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 127 2023 2 31 07 |
allfields_unstemmed |
10.1007/s11038-023-09552-2 doi (DE-627)SPR052591255 (SPR)s11038-023-09552-2-e DE-627 ger DE-627 rakwb eng Bromiley, Geoffrey David verfasserin (orcid)0000-0002-2999-4235 aut The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023. corrected publication 2023 Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting. Planetesimal (dpeaa)DE-He213 Core-formation (dpeaa)DE-He213 Percolation (dpeaa)DE-He213 Metal (dpeaa)DE-He213 Silicate (dpeaa)DE-He213 Differentiation (dpeaa)DE-He213 Enthalten in Earth, moon and planets Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 127(2023), 2 vom: 31. Juli (DE-627)268757518 (DE-600)1472717-1 1573-0794 nnns volume:127 year:2023 number:2 day:31 month:07 https://dx.doi.org/10.1007/s11038-023-09552-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 127 2023 2 31 07 |
allfieldsGer |
10.1007/s11038-023-09552-2 doi (DE-627)SPR052591255 (SPR)s11038-023-09552-2-e DE-627 ger DE-627 rakwb eng Bromiley, Geoffrey David verfasserin (orcid)0000-0002-2999-4235 aut The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023. corrected publication 2023 Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting. Planetesimal (dpeaa)DE-He213 Core-formation (dpeaa)DE-He213 Percolation (dpeaa)DE-He213 Metal (dpeaa)DE-He213 Silicate (dpeaa)DE-He213 Differentiation (dpeaa)DE-He213 Enthalten in Earth, moon and planets Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 127(2023), 2 vom: 31. Juli (DE-627)268757518 (DE-600)1472717-1 1573-0794 nnns volume:127 year:2023 number:2 day:31 month:07 https://dx.doi.org/10.1007/s11038-023-09552-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 127 2023 2 31 07 |
allfieldsSound |
10.1007/s11038-023-09552-2 doi (DE-627)SPR052591255 (SPR)s11038-023-09552-2-e DE-627 ger DE-627 rakwb eng Bromiley, Geoffrey David verfasserin (orcid)0000-0002-2999-4235 aut The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023. corrected publication 2023 Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting. Planetesimal (dpeaa)DE-He213 Core-formation (dpeaa)DE-He213 Percolation (dpeaa)DE-He213 Metal (dpeaa)DE-He213 Silicate (dpeaa)DE-He213 Differentiation (dpeaa)DE-He213 Enthalten in Earth, moon and planets Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969 127(2023), 2 vom: 31. Juli (DE-627)268757518 (DE-600)1472717-1 1573-0794 nnns volume:127 year:2023 number:2 day:31 month:07 https://dx.doi.org/10.1007/s11038-023-09552-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 127 2023 2 31 07 |
language |
English |
source |
Enthalten in Earth, moon and planets 127(2023), 2 vom: 31. Juli volume:127 year:2023 number:2 day:31 month:07 |
sourceStr |
Enthalten in Earth, moon and planets 127(2023), 2 vom: 31. Juli volume:127 year:2023 number:2 day:31 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Planetesimal Core-formation Percolation Metal Silicate Differentiation |
isfreeaccess_bool |
true |
container_title |
Earth, moon and planets |
authorswithroles_txt_mv |
Bromiley, Geoffrey David @@aut@@ |
publishDateDaySort_date |
2023-07-31T00:00:00Z |
hierarchy_top_id |
268757518 |
id |
SPR052591255 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052591255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231018064656.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230801s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11038-023-09552-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052591255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11038-023-09552-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bromiley, Geoffrey David</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2999-4235</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023. corrected publication 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetesimal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Core-formation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Percolation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Earth, moon and planets</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969</subfield><subfield code="g">127(2023), 2 vom: 31. Juli</subfield><subfield code="w">(DE-627)268757518</subfield><subfield code="w">(DE-600)1472717-1</subfield><subfield code="x">1573-0794</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:127</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2</subfield><subfield code="g">day:31</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11038-023-09552-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">127</subfield><subfield code="j">2023</subfield><subfield code="e">2</subfield><subfield code="b">31</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Bromiley, Geoffrey David |
spellingShingle |
Bromiley, Geoffrey David misc Planetesimal misc Core-formation misc Percolation misc Metal misc Silicate misc Differentiation The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals |
authorStr |
Bromiley, Geoffrey David |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268757518 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-0794 |
topic_title |
The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals Planetesimal (dpeaa)DE-He213 Core-formation (dpeaa)DE-He213 Percolation (dpeaa)DE-He213 Metal (dpeaa)DE-He213 Silicate (dpeaa)DE-He213 Differentiation (dpeaa)DE-He213 |
topic |
misc Planetesimal misc Core-formation misc Percolation misc Metal misc Silicate misc Differentiation |
topic_unstemmed |
misc Planetesimal misc Core-formation misc Percolation misc Metal misc Silicate misc Differentiation |
topic_browse |
misc Planetesimal misc Core-formation misc Percolation misc Metal misc Silicate misc Differentiation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Earth, moon and planets |
hierarchy_parent_id |
268757518 |
hierarchy_top_title |
Earth, moon and planets |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)268757518 (DE-600)1472717-1 |
title |
The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals |
ctrlnum |
(DE-627)SPR052591255 (SPR)s11038-023-09552-2-e |
title_full |
The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals |
author_sort |
Bromiley, Geoffrey David |
journal |
Earth, moon and planets |
journalStr |
Earth, moon and planets |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Bromiley, Geoffrey David |
container_volume |
127 |
format_se |
Elektronische Aufsätze |
author-letter |
Bromiley, Geoffrey David |
doi_str_mv |
10.1007/s11038-023-09552-2 |
normlink |
(ORCID)0000-0002-2999-4235 |
normlink_prefix_str_mv |
(orcid)0000-0002-2999-4235 |
title_sort |
geochemical legacy of low-temperature, percolation-driven core formation in planetesimals |
title_auth |
The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals |
abstract |
Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting. © The Author(s) 2023. corrected publication 2023 |
abstractGer |
Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting. © The Author(s) 2023. corrected publication 2023 |
abstract_unstemmed |
Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting. © The Author(s) 2023. corrected publication 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals |
url |
https://dx.doi.org/10.1007/s11038-023-09552-2 |
remote_bool |
true |
ppnlink |
268757518 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11038-023-09552-2 |
up_date |
2024-07-04T03:21:05.405Z |
_version_ |
1803617058583216128 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052591255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231018064656.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230801s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11038-023-09552-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052591255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11038-023-09552-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bromiley, Geoffrey David</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2999-4235</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Geochemical Legacy of Low-Temperature, Percolation-Driven Core Formation in Planetesimals</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023. corrected publication 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Mechanisms for core formation in differentiated bodies in the early solar system are poorly constrained. At temperatures below those required to extensively melt planetesimals, core formation could have proceeded via percolation of metallic liquids. Although there is some geochemical data to support such ‘low-temperature’ segregation, experimental studies and simulations suggest that percolation-driven segregation might have only contributed to core formation in a proportion of fully-differentiated bodies. Here, the effects low-temperature core-formation on elemental compositions of planetesimal cores and mantles are explored. Immiscibility of Fe-rich and FeS-rich liquids will occur in all core-formation models, including those involving large fraction silicate melting. Light element content of cores (Si, O, C, P, S) depends on conditions under which Fe-rich and FeS-rich liquids segregated, especially pressure and oxygen fugacity. The S contents of FeS-rich liquids significantly exceed eutectic compositions in Fe–Ni–S systems and cannot be reconciled with S-contents of parent bodies to magmatic iron meteorites. Furthermore, there is limited data on trace element partitioning between FeS-rich and Fe-rich phases, and solid/melt partitioning models cannot be readily applied to FeS-rich liquids. Interaction of metallic liquids with minor phases stable up to low fraction silicate melting could provide a means for determining the extent of silicate melting prior to initiation of core-formation. However, element partitioning in most core-formation models remains poorly constrained, and it is likely that conditions under which segregation of metallic liquid occurred, especially oxygen fugacity and pressure, had as significant a control on planetesimal composition as segregation mechanisms and extent of silicate melting.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetesimal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Core-formation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Percolation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Earth, moon and planets</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1969</subfield><subfield code="g">127(2023), 2 vom: 31. Juli</subfield><subfield code="w">(DE-627)268757518</subfield><subfield code="w">(DE-600)1472717-1</subfield><subfield code="x">1573-0794</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:127</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:2</subfield><subfield code="g">day:31</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11038-023-09552-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">127</subfield><subfield code="j">2023</subfield><subfield code="e">2</subfield><subfield code="b">31</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.402669 |