A New Ontology Convolutional Neural Network for Extorting Essential Elements in Video Mining

Abstract Nowadays, people use video compression for recreating video without affecting the quality with reduced size. In recent years, the number of video files has increased in social media, smartphones and video recording tools. It is not easy to search and retrieve specific content-based videos....
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Ganesh, R. Karthik [verfasserIn]

Kanthavel, R.

Dhaya, R.

Robinson, Y. Harold

Julie, E. Golden

Kumar, Raghvendra

Duong, Phet

Thong, Pham Huy

Son, Le Hoang

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Video compression; Convolutional Neural Network

Ontology Model

Temporal Position

Semantic contents

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Journal of VLSI signal processing systems for signal, image and video technology - Springer Netherlands, 1989, 95(2023), 6 vom: 25. Mai, Seite 735-749

Übergeordnetes Werk:

volume:95 ; year:2023 ; number:6 ; day:25 ; month:05 ; pages:735-749

Links:

Volltext

DOI / URN:

10.1007/s11265-023-01864-w

Katalog-ID:

SPR052592286

Nicht das Richtige dabei?

Schreiben Sie uns!