Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor
Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under salin...
Ausführliche Beschreibung
Autor*in: |
Azeem, Muhammad [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of plant growth regulation - New York, NY : Springer, 1982, 42(2023), 8 vom: 21. Jan., Seite 5266-5279 |
---|---|
Übergeordnetes Werk: |
volume:42 ; year:2023 ; number:8 ; day:21 ; month:01 ; pages:5266-5279 |
Links: |
---|
DOI / URN: |
10.1007/s00344-023-10907-2 |
---|
Katalog-ID: |
SPR05260280X |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR05260280X | ||
003 | DE-627 | ||
005 | 20230802064653.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230802s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00344-023-10907-2 |2 doi | |
035 | |a (DE-627)SPR05260280X | ||
035 | |a (SPR)s00344-023-10907-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Azeem, Muhammad |e verfasserin |0 (orcid)0000-0003-1668-3830 |4 aut | |
245 | 1 | 0 | |a Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under saline conditions. Plants were grown in netted greenhouse and sub-irrigated with Hoagland’s nutrient solution containing 0- and 100-mM NaCl. Both sets (non-saline and saline) were provided with two concentrations (0.5 mM and 1 mM) of ASA and SA each, through rooting medium and the experiment was continued for 45 days. Salt stress adversely affected the growth, physiological, and photosynthetic attributes of S. bicolor. Salt stress inactivated the reaction centers of S. bicolor chloroplast and disturbed the structural stability of PSII. The changes in PSII caused the reduction in $ PI_{ABS} $, Fv/Fm, and OJIP parameters. However, the application of ASA and SA effectively enhanced plant biomass, leaf pigments, photosynthetic efficiency, and enzymatic and non-enzymatic antioxidant activities under both saline and non-saline conditions. The most effective concentrations that significantly improved plant biomass, chlorophyll fluorescence, and eco-physiological responses of S. bicolor were 0.5 mM and 1 mM for ASA and SA, respectively. Both treatments strengthen plants by decreasing $ Na^{+} $ uptake and $ Na^{+} $/$ K^{+} $ ratio, while retaining more $ K^{+} $ in root and increasing $ K^{+} $ transport to shoot, under saline conditions. In addition, these treatments significantly reduced oxidative stress markers (MDA and $ H_{2} %$ O_{2} $) by increasing activities of enzymatic and non-enzymatic antioxidants and polyphenols, soluble sugars, and proline contents. Therefore, application of ASA (0.5 mM) and SA (1 mM) was turned out to be the effective remedy for improving salinity tolerance of Sorghum. This approach could be used to obtain significant biomass of a multipurpose crop from theoretically unproductive soils that will help to meet the basic necessities (like food, fodder, forage, and energy) of the ever-growing population. | ||
650 | 4 | |a Growth regulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Phytohormone-like Plant Growth Regulators |7 (dpeaa)DE-He213 | |
650 | 4 | |a Salt tolerance mechanisms |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stress Mitigation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sultana, Robina |4 aut | |
700 | 1 | |a Mahmood, Athar |4 aut | |
700 | 1 | |a Qasim, Muhammad |4 aut | |
700 | 1 | |a Siddiqui, Zamin Shaheed |4 aut | |
700 | 1 | |a Mumtaz, Sahar |4 aut | |
700 | 1 | |a Javed, Talha |4 aut | |
700 | 1 | |a Umar, Muhammad |4 aut | |
700 | 1 | |a Adnan, M. Yousuf |4 aut | |
700 | 1 | |a Siddiqui, Manzer H. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of plant growth regulation |d New York, NY : Springer, 1982 |g 42(2023), 8 vom: 21. Jan., Seite 5266-5279 |w (DE-627)254630448 |w (DE-600)1462091-1 |x 1435-8107 |7 nnns |
773 | 1 | 8 | |g volume:42 |g year:2023 |g number:8 |g day:21 |g month:01 |g pages:5266-5279 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00344-023-10907-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 42 |j 2023 |e 8 |b 21 |c 01 |h 5266-5279 |
author_variant |
m a ma r s rs a m am m q mq z s s zs zss s m sm t j tj m u mu m y a my mya m h s mh mhs |
---|---|
matchkey_str |
article:14358107:2023----::sobcnslclccdvtlzdrwhiceiarsossnixdnezmshtsnhtcfiinyninceuain |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s00344-023-10907-2 doi (DE-627)SPR05260280X (SPR)s00344-023-10907-2-e DE-627 ger DE-627 rakwb eng Azeem, Muhammad verfasserin (orcid)0000-0003-1668-3830 aut Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under saline conditions. Plants were grown in netted greenhouse and sub-irrigated with Hoagland’s nutrient solution containing 0- and 100-mM NaCl. Both sets (non-saline and saline) were provided with two concentrations (0.5 mM and 1 mM) of ASA and SA each, through rooting medium and the experiment was continued for 45 days. Salt stress adversely affected the growth, physiological, and photosynthetic attributes of S. bicolor. Salt stress inactivated the reaction centers of S. bicolor chloroplast and disturbed the structural stability of PSII. The changes in PSII caused the reduction in $ PI_{ABS} $, Fv/Fm, and OJIP parameters. However, the application of ASA and SA effectively enhanced plant biomass, leaf pigments, photosynthetic efficiency, and enzymatic and non-enzymatic antioxidant activities under both saline and non-saline conditions. The most effective concentrations that significantly improved plant biomass, chlorophyll fluorescence, and eco-physiological responses of S. bicolor were 0.5 mM and 1 mM for ASA and SA, respectively. Both treatments strengthen plants by decreasing $ Na^{+} $ uptake and $ Na^{+} $/$ K^{+} $ ratio, while retaining more $ K^{+} $ in root and increasing $ K^{+} $ transport to shoot, under saline conditions. In addition, these treatments significantly reduced oxidative stress markers (MDA and $ H_{2} %$ O_{2} $) by increasing activities of enzymatic and non-enzymatic antioxidants and polyphenols, soluble sugars, and proline contents. Therefore, application of ASA (0.5 mM) and SA (1 mM) was turned out to be the effective remedy for improving salinity tolerance of Sorghum. This approach could be used to obtain significant biomass of a multipurpose crop from theoretically unproductive soils that will help to meet the basic necessities (like food, fodder, forage, and energy) of the ever-growing population. Growth regulation (dpeaa)DE-He213 Phytohormone-like Plant Growth Regulators (dpeaa)DE-He213 Salt tolerance mechanisms (dpeaa)DE-He213 Stress Mitigation (dpeaa)DE-He213 Sultana, Robina aut Mahmood, Athar aut Qasim, Muhammad aut Siddiqui, Zamin Shaheed aut Mumtaz, Sahar aut Javed, Talha aut Umar, Muhammad aut Adnan, M. Yousuf aut Siddiqui, Manzer H. aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 42(2023), 8 vom: 21. Jan., Seite 5266-5279 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:42 year:2023 number:8 day:21 month:01 pages:5266-5279 https://dx.doi.org/10.1007/s00344-023-10907-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2023 8 21 01 5266-5279 |
spelling |
10.1007/s00344-023-10907-2 doi (DE-627)SPR05260280X (SPR)s00344-023-10907-2-e DE-627 ger DE-627 rakwb eng Azeem, Muhammad verfasserin (orcid)0000-0003-1668-3830 aut Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under saline conditions. Plants were grown in netted greenhouse and sub-irrigated with Hoagland’s nutrient solution containing 0- and 100-mM NaCl. Both sets (non-saline and saline) were provided with two concentrations (0.5 mM and 1 mM) of ASA and SA each, through rooting medium and the experiment was continued for 45 days. Salt stress adversely affected the growth, physiological, and photosynthetic attributes of S. bicolor. Salt stress inactivated the reaction centers of S. bicolor chloroplast and disturbed the structural stability of PSII. The changes in PSII caused the reduction in $ PI_{ABS} $, Fv/Fm, and OJIP parameters. However, the application of ASA and SA effectively enhanced plant biomass, leaf pigments, photosynthetic efficiency, and enzymatic and non-enzymatic antioxidant activities under both saline and non-saline conditions. The most effective concentrations that significantly improved plant biomass, chlorophyll fluorescence, and eco-physiological responses of S. bicolor were 0.5 mM and 1 mM for ASA and SA, respectively. Both treatments strengthen plants by decreasing $ Na^{+} $ uptake and $ Na^{+} $/$ K^{+} $ ratio, while retaining more $ K^{+} $ in root and increasing $ K^{+} $ transport to shoot, under saline conditions. In addition, these treatments significantly reduced oxidative stress markers (MDA and $ H_{2} %$ O_{2} $) by increasing activities of enzymatic and non-enzymatic antioxidants and polyphenols, soluble sugars, and proline contents. Therefore, application of ASA (0.5 mM) and SA (1 mM) was turned out to be the effective remedy for improving salinity tolerance of Sorghum. This approach could be used to obtain significant biomass of a multipurpose crop from theoretically unproductive soils that will help to meet the basic necessities (like food, fodder, forage, and energy) of the ever-growing population. Growth regulation (dpeaa)DE-He213 Phytohormone-like Plant Growth Regulators (dpeaa)DE-He213 Salt tolerance mechanisms (dpeaa)DE-He213 Stress Mitigation (dpeaa)DE-He213 Sultana, Robina aut Mahmood, Athar aut Qasim, Muhammad aut Siddiqui, Zamin Shaheed aut Mumtaz, Sahar aut Javed, Talha aut Umar, Muhammad aut Adnan, M. Yousuf aut Siddiqui, Manzer H. aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 42(2023), 8 vom: 21. Jan., Seite 5266-5279 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:42 year:2023 number:8 day:21 month:01 pages:5266-5279 https://dx.doi.org/10.1007/s00344-023-10907-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2023 8 21 01 5266-5279 |
allfields_unstemmed |
10.1007/s00344-023-10907-2 doi (DE-627)SPR05260280X (SPR)s00344-023-10907-2-e DE-627 ger DE-627 rakwb eng Azeem, Muhammad verfasserin (orcid)0000-0003-1668-3830 aut Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under saline conditions. Plants were grown in netted greenhouse and sub-irrigated with Hoagland’s nutrient solution containing 0- and 100-mM NaCl. Both sets (non-saline and saline) were provided with two concentrations (0.5 mM and 1 mM) of ASA and SA each, through rooting medium and the experiment was continued for 45 days. Salt stress adversely affected the growth, physiological, and photosynthetic attributes of S. bicolor. Salt stress inactivated the reaction centers of S. bicolor chloroplast and disturbed the structural stability of PSII. The changes in PSII caused the reduction in $ PI_{ABS} $, Fv/Fm, and OJIP parameters. However, the application of ASA and SA effectively enhanced plant biomass, leaf pigments, photosynthetic efficiency, and enzymatic and non-enzymatic antioxidant activities under both saline and non-saline conditions. The most effective concentrations that significantly improved plant biomass, chlorophyll fluorescence, and eco-physiological responses of S. bicolor were 0.5 mM and 1 mM for ASA and SA, respectively. Both treatments strengthen plants by decreasing $ Na^{+} $ uptake and $ Na^{+} $/$ K^{+} $ ratio, while retaining more $ K^{+} $ in root and increasing $ K^{+} $ transport to shoot, under saline conditions. In addition, these treatments significantly reduced oxidative stress markers (MDA and $ H_{2} %$ O_{2} $) by increasing activities of enzymatic and non-enzymatic antioxidants and polyphenols, soluble sugars, and proline contents. Therefore, application of ASA (0.5 mM) and SA (1 mM) was turned out to be the effective remedy for improving salinity tolerance of Sorghum. This approach could be used to obtain significant biomass of a multipurpose crop from theoretically unproductive soils that will help to meet the basic necessities (like food, fodder, forage, and energy) of the ever-growing population. Growth regulation (dpeaa)DE-He213 Phytohormone-like Plant Growth Regulators (dpeaa)DE-He213 Salt tolerance mechanisms (dpeaa)DE-He213 Stress Mitigation (dpeaa)DE-He213 Sultana, Robina aut Mahmood, Athar aut Qasim, Muhammad aut Siddiqui, Zamin Shaheed aut Mumtaz, Sahar aut Javed, Talha aut Umar, Muhammad aut Adnan, M. Yousuf aut Siddiqui, Manzer H. aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 42(2023), 8 vom: 21. Jan., Seite 5266-5279 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:42 year:2023 number:8 day:21 month:01 pages:5266-5279 https://dx.doi.org/10.1007/s00344-023-10907-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2023 8 21 01 5266-5279 |
allfieldsGer |
10.1007/s00344-023-10907-2 doi (DE-627)SPR05260280X (SPR)s00344-023-10907-2-e DE-627 ger DE-627 rakwb eng Azeem, Muhammad verfasserin (orcid)0000-0003-1668-3830 aut Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under saline conditions. Plants were grown in netted greenhouse and sub-irrigated with Hoagland’s nutrient solution containing 0- and 100-mM NaCl. Both sets (non-saline and saline) were provided with two concentrations (0.5 mM and 1 mM) of ASA and SA each, through rooting medium and the experiment was continued for 45 days. Salt stress adversely affected the growth, physiological, and photosynthetic attributes of S. bicolor. Salt stress inactivated the reaction centers of S. bicolor chloroplast and disturbed the structural stability of PSII. The changes in PSII caused the reduction in $ PI_{ABS} $, Fv/Fm, and OJIP parameters. However, the application of ASA and SA effectively enhanced plant biomass, leaf pigments, photosynthetic efficiency, and enzymatic and non-enzymatic antioxidant activities under both saline and non-saline conditions. The most effective concentrations that significantly improved plant biomass, chlorophyll fluorescence, and eco-physiological responses of S. bicolor were 0.5 mM and 1 mM for ASA and SA, respectively. Both treatments strengthen plants by decreasing $ Na^{+} $ uptake and $ Na^{+} $/$ K^{+} $ ratio, while retaining more $ K^{+} $ in root and increasing $ K^{+} $ transport to shoot, under saline conditions. In addition, these treatments significantly reduced oxidative stress markers (MDA and $ H_{2} %$ O_{2} $) by increasing activities of enzymatic and non-enzymatic antioxidants and polyphenols, soluble sugars, and proline contents. Therefore, application of ASA (0.5 mM) and SA (1 mM) was turned out to be the effective remedy for improving salinity tolerance of Sorghum. This approach could be used to obtain significant biomass of a multipurpose crop from theoretically unproductive soils that will help to meet the basic necessities (like food, fodder, forage, and energy) of the ever-growing population. Growth regulation (dpeaa)DE-He213 Phytohormone-like Plant Growth Regulators (dpeaa)DE-He213 Salt tolerance mechanisms (dpeaa)DE-He213 Stress Mitigation (dpeaa)DE-He213 Sultana, Robina aut Mahmood, Athar aut Qasim, Muhammad aut Siddiqui, Zamin Shaheed aut Mumtaz, Sahar aut Javed, Talha aut Umar, Muhammad aut Adnan, M. Yousuf aut Siddiqui, Manzer H. aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 42(2023), 8 vom: 21. Jan., Seite 5266-5279 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:42 year:2023 number:8 day:21 month:01 pages:5266-5279 https://dx.doi.org/10.1007/s00344-023-10907-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2023 8 21 01 5266-5279 |
allfieldsSound |
10.1007/s00344-023-10907-2 doi (DE-627)SPR05260280X (SPR)s00344-023-10907-2-e DE-627 ger DE-627 rakwb eng Azeem, Muhammad verfasserin (orcid)0000-0003-1668-3830 aut Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under saline conditions. Plants were grown in netted greenhouse and sub-irrigated with Hoagland’s nutrient solution containing 0- and 100-mM NaCl. Both sets (non-saline and saline) were provided with two concentrations (0.5 mM and 1 mM) of ASA and SA each, through rooting medium and the experiment was continued for 45 days. Salt stress adversely affected the growth, physiological, and photosynthetic attributes of S. bicolor. Salt stress inactivated the reaction centers of S. bicolor chloroplast and disturbed the structural stability of PSII. The changes in PSII caused the reduction in $ PI_{ABS} $, Fv/Fm, and OJIP parameters. However, the application of ASA and SA effectively enhanced plant biomass, leaf pigments, photosynthetic efficiency, and enzymatic and non-enzymatic antioxidant activities under both saline and non-saline conditions. The most effective concentrations that significantly improved plant biomass, chlorophyll fluorescence, and eco-physiological responses of S. bicolor were 0.5 mM and 1 mM for ASA and SA, respectively. Both treatments strengthen plants by decreasing $ Na^{+} $ uptake and $ Na^{+} $/$ K^{+} $ ratio, while retaining more $ K^{+} $ in root and increasing $ K^{+} $ transport to shoot, under saline conditions. In addition, these treatments significantly reduced oxidative stress markers (MDA and $ H_{2} %$ O_{2} $) by increasing activities of enzymatic and non-enzymatic antioxidants and polyphenols, soluble sugars, and proline contents. Therefore, application of ASA (0.5 mM) and SA (1 mM) was turned out to be the effective remedy for improving salinity tolerance of Sorghum. This approach could be used to obtain significant biomass of a multipurpose crop from theoretically unproductive soils that will help to meet the basic necessities (like food, fodder, forage, and energy) of the ever-growing population. Growth regulation (dpeaa)DE-He213 Phytohormone-like Plant Growth Regulators (dpeaa)DE-He213 Salt tolerance mechanisms (dpeaa)DE-He213 Stress Mitigation (dpeaa)DE-He213 Sultana, Robina aut Mahmood, Athar aut Qasim, Muhammad aut Siddiqui, Zamin Shaheed aut Mumtaz, Sahar aut Javed, Talha aut Umar, Muhammad aut Adnan, M. Yousuf aut Siddiqui, Manzer H. aut Enthalten in Journal of plant growth regulation New York, NY : Springer, 1982 42(2023), 8 vom: 21. Jan., Seite 5266-5279 (DE-627)254630448 (DE-600)1462091-1 1435-8107 nnns volume:42 year:2023 number:8 day:21 month:01 pages:5266-5279 https://dx.doi.org/10.1007/s00344-023-10907-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 42 2023 8 21 01 5266-5279 |
language |
English |
source |
Enthalten in Journal of plant growth regulation 42(2023), 8 vom: 21. Jan., Seite 5266-5279 volume:42 year:2023 number:8 day:21 month:01 pages:5266-5279 |
sourceStr |
Enthalten in Journal of plant growth regulation 42(2023), 8 vom: 21. Jan., Seite 5266-5279 volume:42 year:2023 number:8 day:21 month:01 pages:5266-5279 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Growth regulation Phytohormone-like Plant Growth Regulators Salt tolerance mechanisms Stress Mitigation |
isfreeaccess_bool |
false |
container_title |
Journal of plant growth regulation |
authorswithroles_txt_mv |
Azeem, Muhammad @@aut@@ Sultana, Robina @@aut@@ Mahmood, Athar @@aut@@ Qasim, Muhammad @@aut@@ Siddiqui, Zamin Shaheed @@aut@@ Mumtaz, Sahar @@aut@@ Javed, Talha @@aut@@ Umar, Muhammad @@aut@@ Adnan, M. Yousuf @@aut@@ Siddiqui, Manzer H. @@aut@@ |
publishDateDaySort_date |
2023-01-21T00:00:00Z |
hierarchy_top_id |
254630448 |
id |
SPR05260280X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05260280X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230802064653.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230802s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00344-023-10907-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05260280X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00344-023-10907-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Azeem, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1668-3830</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under saline conditions. Plants were grown in netted greenhouse and sub-irrigated with Hoagland’s nutrient solution containing 0- and 100-mM NaCl. Both sets (non-saline and saline) were provided with two concentrations (0.5 mM and 1 mM) of ASA and SA each, through rooting medium and the experiment was continued for 45 days. Salt stress adversely affected the growth, physiological, and photosynthetic attributes of S. bicolor. Salt stress inactivated the reaction centers of S. bicolor chloroplast and disturbed the structural stability of PSII. The changes in PSII caused the reduction in $ PI_{ABS} $, Fv/Fm, and OJIP parameters. However, the application of ASA and SA effectively enhanced plant biomass, leaf pigments, photosynthetic efficiency, and enzymatic and non-enzymatic antioxidant activities under both saline and non-saline conditions. The most effective concentrations that significantly improved plant biomass, chlorophyll fluorescence, and eco-physiological responses of S. bicolor were 0.5 mM and 1 mM for ASA and SA, respectively. Both treatments strengthen plants by decreasing $ Na^{+} $ uptake and $ Na^{+} $/$ K^{+} $ ratio, while retaining more $ K^{+} $ in root and increasing $ K^{+} $ transport to shoot, under saline conditions. In addition, these treatments significantly reduced oxidative stress markers (MDA and $ H_{2} %$ O_{2} $) by increasing activities of enzymatic and non-enzymatic antioxidants and polyphenols, soluble sugars, and proline contents. Therefore, application of ASA (0.5 mM) and SA (1 mM) was turned out to be the effective remedy for improving salinity tolerance of Sorghum. This approach could be used to obtain significant biomass of a multipurpose crop from theoretically unproductive soils that will help to meet the basic necessities (like food, fodder, forage, and energy) of the ever-growing population.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Growth regulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phytohormone-like Plant Growth Regulators</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salt tolerance mechanisms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Mitigation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sultana, Robina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahmood, Athar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qasim, Muhammad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siddiqui, Zamin Shaheed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mumtaz, Sahar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Javed, Talha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Umar, Muhammad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adnan, M. Yousuf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siddiqui, Manzer H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of plant growth regulation</subfield><subfield code="d">New York, NY : Springer, 1982</subfield><subfield code="g">42(2023), 8 vom: 21. Jan., Seite 5266-5279</subfield><subfield code="w">(DE-627)254630448</subfield><subfield code="w">(DE-600)1462091-1</subfield><subfield code="x">1435-8107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8</subfield><subfield code="g">day:21</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:5266-5279</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00344-023-10907-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2023</subfield><subfield code="e">8</subfield><subfield code="b">21</subfield><subfield code="c">01</subfield><subfield code="h">5266-5279</subfield></datafield></record></collection>
|
author |
Azeem, Muhammad |
spellingShingle |
Azeem, Muhammad misc Growth regulation misc Phytohormone-like Plant Growth Regulators misc Salt tolerance mechanisms misc Stress Mitigation Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor |
authorStr |
Azeem, Muhammad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254630448 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1435-8107 |
topic_title |
Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor Growth regulation (dpeaa)DE-He213 Phytohormone-like Plant Growth Regulators (dpeaa)DE-He213 Salt tolerance mechanisms (dpeaa)DE-He213 Stress Mitigation (dpeaa)DE-He213 |
topic |
misc Growth regulation misc Phytohormone-like Plant Growth Regulators misc Salt tolerance mechanisms misc Stress Mitigation |
topic_unstemmed |
misc Growth regulation misc Phytohormone-like Plant Growth Regulators misc Salt tolerance mechanisms misc Stress Mitigation |
topic_browse |
misc Growth regulation misc Phytohormone-like Plant Growth Regulators misc Salt tolerance mechanisms misc Stress Mitigation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of plant growth regulation |
hierarchy_parent_id |
254630448 |
hierarchy_top_title |
Journal of plant growth regulation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254630448 (DE-600)1462091-1 |
title |
Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor |
ctrlnum |
(DE-627)SPR05260280X (SPR)s00344-023-10907-2-e |
title_full |
Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor |
author_sort |
Azeem, Muhammad |
journal |
Journal of plant growth regulation |
journalStr |
Journal of plant growth regulation |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
5266 |
author_browse |
Azeem, Muhammad Sultana, Robina Mahmood, Athar Qasim, Muhammad Siddiqui, Zamin Shaheed Mumtaz, Sahar Javed, Talha Umar, Muhammad Adnan, M. Yousuf Siddiqui, Manzer H. |
container_volume |
42 |
format_se |
Elektronische Aufsätze |
author-letter |
Azeem, Muhammad |
doi_str_mv |
10.1007/s00344-023-10907-2 |
normlink |
(ORCID)0000-0003-1668-3830 |
normlink_prefix_str_mv |
(orcid)0000-0003-1668-3830 |
title_sort |
ascorbic and salicylic acids vitalized growth, biochemical responses, antioxidant enzymes, photosynthetic efficiency, and ionic regulation to alleviate salinity stress in sorghum bicolor |
title_auth |
Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor |
abstract |
Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under saline conditions. Plants were grown in netted greenhouse and sub-irrigated with Hoagland’s nutrient solution containing 0- and 100-mM NaCl. Both sets (non-saline and saline) were provided with two concentrations (0.5 mM and 1 mM) of ASA and SA each, through rooting medium and the experiment was continued for 45 days. Salt stress adversely affected the growth, physiological, and photosynthetic attributes of S. bicolor. Salt stress inactivated the reaction centers of S. bicolor chloroplast and disturbed the structural stability of PSII. The changes in PSII caused the reduction in $ PI_{ABS} $, Fv/Fm, and OJIP parameters. However, the application of ASA and SA effectively enhanced plant biomass, leaf pigments, photosynthetic efficiency, and enzymatic and non-enzymatic antioxidant activities under both saline and non-saline conditions. The most effective concentrations that significantly improved plant biomass, chlorophyll fluorescence, and eco-physiological responses of S. bicolor were 0.5 mM and 1 mM for ASA and SA, respectively. Both treatments strengthen plants by decreasing $ Na^{+} $ uptake and $ Na^{+} $/$ K^{+} $ ratio, while retaining more $ K^{+} $ in root and increasing $ K^{+} $ transport to shoot, under saline conditions. In addition, these treatments significantly reduced oxidative stress markers (MDA and $ H_{2} %$ O_{2} $) by increasing activities of enzymatic and non-enzymatic antioxidants and polyphenols, soluble sugars, and proline contents. Therefore, application of ASA (0.5 mM) and SA (1 mM) was turned out to be the effective remedy for improving salinity tolerance of Sorghum. This approach could be used to obtain significant biomass of a multipurpose crop from theoretically unproductive soils that will help to meet the basic necessities (like food, fodder, forage, and energy) of the ever-growing population. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under saline conditions. Plants were grown in netted greenhouse and sub-irrigated with Hoagland’s nutrient solution containing 0- and 100-mM NaCl. Both sets (non-saline and saline) were provided with two concentrations (0.5 mM and 1 mM) of ASA and SA each, through rooting medium and the experiment was continued for 45 days. Salt stress adversely affected the growth, physiological, and photosynthetic attributes of S. bicolor. Salt stress inactivated the reaction centers of S. bicolor chloroplast and disturbed the structural stability of PSII. The changes in PSII caused the reduction in $ PI_{ABS} $, Fv/Fm, and OJIP parameters. However, the application of ASA and SA effectively enhanced plant biomass, leaf pigments, photosynthetic efficiency, and enzymatic and non-enzymatic antioxidant activities under both saline and non-saline conditions. The most effective concentrations that significantly improved plant biomass, chlorophyll fluorescence, and eco-physiological responses of S. bicolor were 0.5 mM and 1 mM for ASA and SA, respectively. Both treatments strengthen plants by decreasing $ Na^{+} $ uptake and $ Na^{+} $/$ K^{+} $ ratio, while retaining more $ K^{+} $ in root and increasing $ K^{+} $ transport to shoot, under saline conditions. In addition, these treatments significantly reduced oxidative stress markers (MDA and $ H_{2} %$ O_{2} $) by increasing activities of enzymatic and non-enzymatic antioxidants and polyphenols, soluble sugars, and proline contents. Therefore, application of ASA (0.5 mM) and SA (1 mM) was turned out to be the effective remedy for improving salinity tolerance of Sorghum. This approach could be used to obtain significant biomass of a multipurpose crop from theoretically unproductive soils that will help to meet the basic necessities (like food, fodder, forage, and energy) of the ever-growing population. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under saline conditions. Plants were grown in netted greenhouse and sub-irrigated with Hoagland’s nutrient solution containing 0- and 100-mM NaCl. Both sets (non-saline and saline) were provided with two concentrations (0.5 mM and 1 mM) of ASA and SA each, through rooting medium and the experiment was continued for 45 days. Salt stress adversely affected the growth, physiological, and photosynthetic attributes of S. bicolor. Salt stress inactivated the reaction centers of S. bicolor chloroplast and disturbed the structural stability of PSII. The changes in PSII caused the reduction in $ PI_{ABS} $, Fv/Fm, and OJIP parameters. However, the application of ASA and SA effectively enhanced plant biomass, leaf pigments, photosynthetic efficiency, and enzymatic and non-enzymatic antioxidant activities under both saline and non-saline conditions. The most effective concentrations that significantly improved plant biomass, chlorophyll fluorescence, and eco-physiological responses of S. bicolor were 0.5 mM and 1 mM for ASA and SA, respectively. Both treatments strengthen plants by decreasing $ Na^{+} $ uptake and $ Na^{+} $/$ K^{+} $ ratio, while retaining more $ K^{+} $ in root and increasing $ K^{+} $ transport to shoot, under saline conditions. In addition, these treatments significantly reduced oxidative stress markers (MDA and $ H_{2} %$ O_{2} $) by increasing activities of enzymatic and non-enzymatic antioxidants and polyphenols, soluble sugars, and proline contents. Therefore, application of ASA (0.5 mM) and SA (1 mM) was turned out to be the effective remedy for improving salinity tolerance of Sorghum. This approach could be used to obtain significant biomass of a multipurpose crop from theoretically unproductive soils that will help to meet the basic necessities (like food, fodder, forage, and energy) of the ever-growing population. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor |
url |
https://dx.doi.org/10.1007/s00344-023-10907-2 |
remote_bool |
true |
author2 |
Sultana, Robina Mahmood, Athar Qasim, Muhammad Siddiqui, Zamin Shaheed Mumtaz, Sahar Javed, Talha Umar, Muhammad Adnan, M. Yousuf Siddiqui, Manzer H. |
author2Str |
Sultana, Robina Mahmood, Athar Qasim, Muhammad Siddiqui, Zamin Shaheed Mumtaz, Sahar Javed, Talha Umar, Muhammad Adnan, M. Yousuf Siddiqui, Manzer H. |
ppnlink |
254630448 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00344-023-10907-2 |
up_date |
2024-07-03T13:25:19.460Z |
_version_ |
1803564476762423296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR05260280X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230802064653.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230802s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00344-023-10907-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR05260280X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00344-023-10907-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Azeem, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1668-3830</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication, 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Ascorbic acid (ASA) and salicylic acid (SA) are well-known growth stimulators influencing various physiological and biochemical functions in plants. The present study aimed to examine the exogenous effects of ASA and SA on growth and physiological performance of Sorghum bicolor, under saline conditions. Plants were grown in netted greenhouse and sub-irrigated with Hoagland’s nutrient solution containing 0- and 100-mM NaCl. Both sets (non-saline and saline) were provided with two concentrations (0.5 mM and 1 mM) of ASA and SA each, through rooting medium and the experiment was continued for 45 days. Salt stress adversely affected the growth, physiological, and photosynthetic attributes of S. bicolor. Salt stress inactivated the reaction centers of S. bicolor chloroplast and disturbed the structural stability of PSII. The changes in PSII caused the reduction in $ PI_{ABS} $, Fv/Fm, and OJIP parameters. However, the application of ASA and SA effectively enhanced plant biomass, leaf pigments, photosynthetic efficiency, and enzymatic and non-enzymatic antioxidant activities under both saline and non-saline conditions. The most effective concentrations that significantly improved plant biomass, chlorophyll fluorescence, and eco-physiological responses of S. bicolor were 0.5 mM and 1 mM for ASA and SA, respectively. Both treatments strengthen plants by decreasing $ Na^{+} $ uptake and $ Na^{+} $/$ K^{+} $ ratio, while retaining more $ K^{+} $ in root and increasing $ K^{+} $ transport to shoot, under saline conditions. In addition, these treatments significantly reduced oxidative stress markers (MDA and $ H_{2} %$ O_{2} $) by increasing activities of enzymatic and non-enzymatic antioxidants and polyphenols, soluble sugars, and proline contents. Therefore, application of ASA (0.5 mM) and SA (1 mM) was turned out to be the effective remedy for improving salinity tolerance of Sorghum. This approach could be used to obtain significant biomass of a multipurpose crop from theoretically unproductive soils that will help to meet the basic necessities (like food, fodder, forage, and energy) of the ever-growing population.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Growth regulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phytohormone-like Plant Growth Regulators</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Salt tolerance mechanisms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stress Mitigation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sultana, Robina</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahmood, Athar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qasim, Muhammad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siddiqui, Zamin Shaheed</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mumtaz, Sahar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Javed, Talha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Umar, Muhammad</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adnan, M. Yousuf</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Siddiqui, Manzer H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of plant growth regulation</subfield><subfield code="d">New York, NY : Springer, 1982</subfield><subfield code="g">42(2023), 8 vom: 21. Jan., Seite 5266-5279</subfield><subfield code="w">(DE-627)254630448</subfield><subfield code="w">(DE-600)1462091-1</subfield><subfield code="x">1435-8107</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:42</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8</subfield><subfield code="g">day:21</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:5266-5279</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00344-023-10907-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">42</subfield><subfield code="j">2023</subfield><subfield code="e">8</subfield><subfield code="b">21</subfield><subfield code="c">01</subfield><subfield code="h">5266-5279</subfield></datafield></record></collection>
|
score |
7.4013147 |