A novel policy-graph approach with natural language and counterfactual abstractions for explaining reinforcement learning agents

Abstract As reinforcement learning (RL) continues to improve and be applied in situations alongside humans, the need to explain the learned behaviors of RL agents to end-users becomes more important. Strategies for explaining the reasoning behind an agent’s policy, called policy-level explanations,...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Liu, Tongtong [verfasserIn]

McCalmon, Joe

Le, Thai

Rahman, Md Asifur

Lee, Dongwon

Alqahtani, Sarra

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Reinforcement learning

Explainable AI

XRL

Autonomous

Anmerkung:

© Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Autonomous agents and multi-agent systems - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1998, 37(2023), 2 vom: 09. Aug.

Übergeordnetes Werk:

volume:37 ; year:2023 ; number:2 ; day:09 ; month:08

Links:

Volltext

DOI / URN:

10.1007/s10458-023-09615-8

Katalog-ID:

SPR052681912

Nicht das Richtige dabei?

Schreiben Sie uns!