A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease
Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to ass...
Ausführliche Beschreibung
Autor*in: |
Asghari, Mehran [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Medical & biological engineering & computing - Cham : Springer Nature, 1963, 61(2023), 9 vom: 27. März, Seite 2241-2254 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2023 ; number:9 ; day:27 ; month:03 ; pages:2241-2254 |
Links: |
---|
DOI / URN: |
10.1007/s11517-023-02823-0 |
---|
Katalog-ID: |
SPR052683885 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR052683885 | ||
003 | DE-627 | ||
005 | 20230810101316.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230810s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11517-023-02823-0 |2 doi | |
035 | |a (DE-627)SPR052683885 | ||
035 | |a (SPR)s11517-023-02823-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Asghari, Mehran |e verfasserin |4 aut | |
245 | 1 | 2 | |a A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD. Graphical Abstract | ||
650 | 4 | |a Computational arm model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Muscle co-contraction |7 (dpeaa)DE-He213 | |
650 | 4 | |a COPD exacerbation |7 (dpeaa)DE-He213 | |
650 | 4 | |a COPD longitudinal outcomes |7 (dpeaa)DE-He213 | |
650 | 4 | |a Upper-extremity function tasks |7 (dpeaa)DE-He213 | |
700 | 1 | |a Peña, Miguel |4 aut | |
700 | 1 | |a Ruiz, Martha |4 aut | |
700 | 1 | |a Johnson, Haley |4 aut | |
700 | 1 | |a Ehsani, Hossein |4 aut | |
700 | 1 | |a Toosizadeh, Nima |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Medical & biological engineering & computing |d Cham : Springer Nature, 1963 |g 61(2023), 9 vom: 27. März, Seite 2241-2254 |w (DE-627)331747456 |w (DE-600)2052667-2 |x 1741-0444 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2023 |g number:9 |g day:27 |g month:03 |g pages:2241-2254 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11517-023-02823-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 61 |j 2023 |e 9 |b 27 |c 03 |h 2241-2254 |
author_variant |
m a ma m p mp m r mr h j hj h e he n t nt |
---|---|
matchkey_str |
article:17410444:2023----::cmuainluclseeaamoefrsesnmsldsucinnhoi |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11517-023-02823-0 doi (DE-627)SPR052683885 (SPR)s11517-023-02823-0-e DE-627 ger DE-627 rakwb eng Asghari, Mehran verfasserin aut A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD. Graphical Abstract Computational arm model (dpeaa)DE-He213 Muscle co-contraction (dpeaa)DE-He213 COPD exacerbation (dpeaa)DE-He213 COPD longitudinal outcomes (dpeaa)DE-He213 Upper-extremity function tasks (dpeaa)DE-He213 Peña, Miguel aut Ruiz, Martha aut Johnson, Haley aut Ehsani, Hossein aut Toosizadeh, Nima aut Enthalten in Medical & biological engineering & computing Cham : Springer Nature, 1963 61(2023), 9 vom: 27. März, Seite 2241-2254 (DE-627)331747456 (DE-600)2052667-2 1741-0444 nnns volume:61 year:2023 number:9 day:27 month:03 pages:2241-2254 https://dx.doi.org/10.1007/s11517-023-02823-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 61 2023 9 27 03 2241-2254 |
spelling |
10.1007/s11517-023-02823-0 doi (DE-627)SPR052683885 (SPR)s11517-023-02823-0-e DE-627 ger DE-627 rakwb eng Asghari, Mehran verfasserin aut A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD. Graphical Abstract Computational arm model (dpeaa)DE-He213 Muscle co-contraction (dpeaa)DE-He213 COPD exacerbation (dpeaa)DE-He213 COPD longitudinal outcomes (dpeaa)DE-He213 Upper-extremity function tasks (dpeaa)DE-He213 Peña, Miguel aut Ruiz, Martha aut Johnson, Haley aut Ehsani, Hossein aut Toosizadeh, Nima aut Enthalten in Medical & biological engineering & computing Cham : Springer Nature, 1963 61(2023), 9 vom: 27. März, Seite 2241-2254 (DE-627)331747456 (DE-600)2052667-2 1741-0444 nnns volume:61 year:2023 number:9 day:27 month:03 pages:2241-2254 https://dx.doi.org/10.1007/s11517-023-02823-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 61 2023 9 27 03 2241-2254 |
allfields_unstemmed |
10.1007/s11517-023-02823-0 doi (DE-627)SPR052683885 (SPR)s11517-023-02823-0-e DE-627 ger DE-627 rakwb eng Asghari, Mehran verfasserin aut A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD. Graphical Abstract Computational arm model (dpeaa)DE-He213 Muscle co-contraction (dpeaa)DE-He213 COPD exacerbation (dpeaa)DE-He213 COPD longitudinal outcomes (dpeaa)DE-He213 Upper-extremity function tasks (dpeaa)DE-He213 Peña, Miguel aut Ruiz, Martha aut Johnson, Haley aut Ehsani, Hossein aut Toosizadeh, Nima aut Enthalten in Medical & biological engineering & computing Cham : Springer Nature, 1963 61(2023), 9 vom: 27. März, Seite 2241-2254 (DE-627)331747456 (DE-600)2052667-2 1741-0444 nnns volume:61 year:2023 number:9 day:27 month:03 pages:2241-2254 https://dx.doi.org/10.1007/s11517-023-02823-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 61 2023 9 27 03 2241-2254 |
allfieldsGer |
10.1007/s11517-023-02823-0 doi (DE-627)SPR052683885 (SPR)s11517-023-02823-0-e DE-627 ger DE-627 rakwb eng Asghari, Mehran verfasserin aut A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD. Graphical Abstract Computational arm model (dpeaa)DE-He213 Muscle co-contraction (dpeaa)DE-He213 COPD exacerbation (dpeaa)DE-He213 COPD longitudinal outcomes (dpeaa)DE-He213 Upper-extremity function tasks (dpeaa)DE-He213 Peña, Miguel aut Ruiz, Martha aut Johnson, Haley aut Ehsani, Hossein aut Toosizadeh, Nima aut Enthalten in Medical & biological engineering & computing Cham : Springer Nature, 1963 61(2023), 9 vom: 27. März, Seite 2241-2254 (DE-627)331747456 (DE-600)2052667-2 1741-0444 nnns volume:61 year:2023 number:9 day:27 month:03 pages:2241-2254 https://dx.doi.org/10.1007/s11517-023-02823-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 61 2023 9 27 03 2241-2254 |
allfieldsSound |
10.1007/s11517-023-02823-0 doi (DE-627)SPR052683885 (SPR)s11517-023-02823-0-e DE-627 ger DE-627 rakwb eng Asghari, Mehran verfasserin aut A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD. Graphical Abstract Computational arm model (dpeaa)DE-He213 Muscle co-contraction (dpeaa)DE-He213 COPD exacerbation (dpeaa)DE-He213 COPD longitudinal outcomes (dpeaa)DE-He213 Upper-extremity function tasks (dpeaa)DE-He213 Peña, Miguel aut Ruiz, Martha aut Johnson, Haley aut Ehsani, Hossein aut Toosizadeh, Nima aut Enthalten in Medical & biological engineering & computing Cham : Springer Nature, 1963 61(2023), 9 vom: 27. März, Seite 2241-2254 (DE-627)331747456 (DE-600)2052667-2 1741-0444 nnns volume:61 year:2023 number:9 day:27 month:03 pages:2241-2254 https://dx.doi.org/10.1007/s11517-023-02823-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 61 2023 9 27 03 2241-2254 |
language |
English |
source |
Enthalten in Medical & biological engineering & computing 61(2023), 9 vom: 27. März, Seite 2241-2254 volume:61 year:2023 number:9 day:27 month:03 pages:2241-2254 |
sourceStr |
Enthalten in Medical & biological engineering & computing 61(2023), 9 vom: 27. März, Seite 2241-2254 volume:61 year:2023 number:9 day:27 month:03 pages:2241-2254 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Computational arm model Muscle co-contraction COPD exacerbation COPD longitudinal outcomes Upper-extremity function tasks |
isfreeaccess_bool |
false |
container_title |
Medical & biological engineering & computing |
authorswithroles_txt_mv |
Asghari, Mehran @@aut@@ Peña, Miguel @@aut@@ Ruiz, Martha @@aut@@ Johnson, Haley @@aut@@ Ehsani, Hossein @@aut@@ Toosizadeh, Nima @@aut@@ |
publishDateDaySort_date |
2023-03-27T00:00:00Z |
hierarchy_top_id |
331747456 |
id |
SPR052683885 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052683885</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230810101316.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230810s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11517-023-02823-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052683885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11517-023-02823-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Asghari, Mehran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational arm model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Muscle co-contraction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COPD exacerbation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COPD longitudinal outcomes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper-extremity function tasks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peña, Miguel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruiz, Martha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johnson, Haley</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ehsani, Hossein</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toosizadeh, Nima</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Medical & biological engineering & computing</subfield><subfield code="d">Cham : Springer Nature, 1963</subfield><subfield code="g">61(2023), 9 vom: 27. März, Seite 2241-2254</subfield><subfield code="w">(DE-627)331747456</subfield><subfield code="w">(DE-600)2052667-2</subfield><subfield code="x">1741-0444</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9</subfield><subfield code="g">day:27</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2241-2254</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11517-023-02823-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2023</subfield><subfield code="e">9</subfield><subfield code="b">27</subfield><subfield code="c">03</subfield><subfield code="h">2241-2254</subfield></datafield></record></collection>
|
author |
Asghari, Mehran |
spellingShingle |
Asghari, Mehran misc Computational arm model misc Muscle co-contraction misc COPD exacerbation misc COPD longitudinal outcomes misc Upper-extremity function tasks A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease |
authorStr |
Asghari, Mehran |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)331747456 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1741-0444 |
topic_title |
A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease Computational arm model (dpeaa)DE-He213 Muscle co-contraction (dpeaa)DE-He213 COPD exacerbation (dpeaa)DE-He213 COPD longitudinal outcomes (dpeaa)DE-He213 Upper-extremity function tasks (dpeaa)DE-He213 |
topic |
misc Computational arm model misc Muscle co-contraction misc COPD exacerbation misc COPD longitudinal outcomes misc Upper-extremity function tasks |
topic_unstemmed |
misc Computational arm model misc Muscle co-contraction misc COPD exacerbation misc COPD longitudinal outcomes misc Upper-extremity function tasks |
topic_browse |
misc Computational arm model misc Muscle co-contraction misc COPD exacerbation misc COPD longitudinal outcomes misc Upper-extremity function tasks |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Medical & biological engineering & computing |
hierarchy_parent_id |
331747456 |
hierarchy_top_title |
Medical & biological engineering & computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)331747456 (DE-600)2052667-2 |
title |
A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease |
ctrlnum |
(DE-627)SPR052683885 (SPR)s11517-023-02823-0-e |
title_full |
A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease |
author_sort |
Asghari, Mehran |
journal |
Medical & biological engineering & computing |
journalStr |
Medical & biological engineering & computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
2241 |
author_browse |
Asghari, Mehran Peña, Miguel Ruiz, Martha Johnson, Haley Ehsani, Hossein Toosizadeh, Nima |
container_volume |
61 |
format_se |
Elektronische Aufsätze |
author-letter |
Asghari, Mehran |
doi_str_mv |
10.1007/s11517-023-02823-0 |
title_sort |
computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease |
title_auth |
A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease |
abstract |
Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD. Graphical Abstract © International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD. Graphical Abstract © International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD. Graphical Abstract © International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_647 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
9 |
title_short |
A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease |
url |
https://dx.doi.org/10.1007/s11517-023-02823-0 |
remote_bool |
true |
author2 |
Peña, Miguel Ruiz, Martha Johnson, Haley Ehsani, Hossein Toosizadeh, Nima |
author2Str |
Peña, Miguel Ruiz, Martha Johnson, Haley Ehsani, Hossein Toosizadeh, Nima |
ppnlink |
331747456 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11517-023-02823-0 |
up_date |
2024-07-03T14:02:41.538Z |
_version_ |
1803566827747409920 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052683885</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230810101316.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230810s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11517-023-02823-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052683885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11517-023-02823-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Asghari, Mehran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A computational musculoskeletal arm model for assessing muscle dysfunction in chronic obstructive pulmonary disease</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© International Federation for Medical and Biological Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Computational models have been used extensively to assess diseases and disabilities effects on musculoskeletal system dysfunction. In the current study, we developed a two degree-of-freedom subject-specific second-order task-specific arm model for characterizing upper-extremity function (UEF) to assess muscle dysfunction due to chronic obstructive pulmonary disease (COPD). Older adults (65 years or older) with and without COPD and healthy young control participants (18 to 30 years) were recruited. First, we evaluated the musculoskeletal arm model using electromyography (EMG) data. Second, we compared the computational musculoskeletal arm model parameters along with EMG-based time lag and kinematics parameters (such as elbow angular velocity) between participants. The developed model showed strong cross-correlation with EMG data for biceps (0.905, 0.915) and moderate cross-correlation for triceps (0.717, 0.672) within both fast and normal pace tasks among older adults with COPD. We also showed that parameters obtained from the musculoskeletal model were significantly different between COPD and healthy participants. On average, higher effect sizes were achieved for parameters obtained from the musculoskeletal model, especially for co-contraction measures (effect size = 1.650 ± 0.606, p < 0.001), which was the only parameter that showed significant differences between all pairwise comparisons across the three groups. These findings suggest that studying the muscle performance and co-contraction, may provide better information regarding neuromuscular deficiencies compared to kinematics data. The presented model has potential for assessing functional capacity and studying longitudinal outcomes in COPD. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational arm model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Muscle co-contraction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COPD exacerbation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COPD longitudinal outcomes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper-extremity function tasks</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peña, Miguel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruiz, Martha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Johnson, Haley</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ehsani, Hossein</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Toosizadeh, Nima</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Medical & biological engineering & computing</subfield><subfield code="d">Cham : Springer Nature, 1963</subfield><subfield code="g">61(2023), 9 vom: 27. März, Seite 2241-2254</subfield><subfield code="w">(DE-627)331747456</subfield><subfield code="w">(DE-600)2052667-2</subfield><subfield code="x">1741-0444</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:9</subfield><subfield code="g">day:27</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2241-2254</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11517-023-02823-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2023</subfield><subfield code="e">9</subfield><subfield code="b">27</subfield><subfield code="c">03</subfield><subfield code="h">2241-2254</subfield></datafield></record></collection>
|
score |
7.400366 |