Non-supersymmetric vacua and self-adjoint extensions
Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrö...
Ausführliche Beschreibung
Autor*in: |
Mourad, J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of high energy physics - Berlin : Springer, 1997, 2023(2023), 8 vom: 09. Aug. |
---|---|
Übergeordnetes Werk: |
volume:2023 ; year:2023 ; number:8 ; day:09 ; month:08 |
Links: |
---|
DOI / URN: |
10.1007/JHEP08(2023)041 |
---|
Katalog-ID: |
SPR052702456 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR052702456 | ||
003 | DE-627 | ||
005 | 20231029064707.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230811s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/JHEP08(2023)041 |2 doi | |
035 | |a (DE-627)SPR052702456 | ||
035 | |a (SPR)JHEP08(2023)041-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Mourad, J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Non-supersymmetric vacua and self-adjoint extensions |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrödinger-like operators, whose potentials have double poles at the ends of the intervals. For one-component systems, the possible self-adjoint extensions of Schrödinger operators are described by points in AdS3 × S1, and those corresponding to independent boundary conditions at the ends of the intervals by points on the boundary of AdS3. The perturbative stability of compactifications to Minkowski space time depends, in general, on these choices of self-adjoint extensions. We apply this setup to the orientifold vacua driven by the “tadpole potential” %$ V=T\ {e}^{\frac{3}{2}\phi } %$ and find, in nine dimensions, a massive scalar spectrum, a unique choice of boundary conditions with stable tensor modes and a massless graviton, and a wide range of choices leading to massless and/or massive vector modes. | ||
650 | 4 | |a Field Theories in Higher Dimensions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Superstring Vacua |7 (dpeaa)DE-He213 | |
650 | 4 | |a Supersymmetry Breaking |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sagnotti, A. |0 (orcid)0000-0002-8525-889X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of high energy physics |d Berlin : Springer, 1997 |g 2023(2023), 8 vom: 09. Aug. |w (DE-627)320910571 |w (DE-600)2027350-2 |x 1029-8479 |7 nnns |
773 | 1 | 8 | |g volume:2023 |g year:2023 |g number:8 |g day:09 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/JHEP08(2023)041 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2023 |j 2023 |e 8 |b 09 |c 08 |
author_variant |
j m jm a s as |
---|---|
matchkey_str |
article:10298479:2023----::osprymtivcanslaj |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/JHEP08(2023)041 doi (DE-627)SPR052702456 (SPR)JHEP08(2023)041-e DE-627 ger DE-627 rakwb eng Mourad, J. verfasserin aut Non-supersymmetric vacua and self-adjoint extensions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrödinger-like operators, whose potentials have double poles at the ends of the intervals. For one-component systems, the possible self-adjoint extensions of Schrödinger operators are described by points in AdS3 × S1, and those corresponding to independent boundary conditions at the ends of the intervals by points on the boundary of AdS3. The perturbative stability of compactifications to Minkowski space time depends, in general, on these choices of self-adjoint extensions. We apply this setup to the orientifold vacua driven by the “tadpole potential” %$ V=T\ {e}^{\frac{3}{2}\phi } %$ and find, in nine dimensions, a massive scalar spectrum, a unique choice of boundary conditions with stable tensor modes and a massless graviton, and a wide range of choices leading to massless and/or massive vector modes. Field Theories in Higher Dimensions (dpeaa)DE-He213 Superstring Vacua (dpeaa)DE-He213 Supersymmetry Breaking (dpeaa)DE-He213 Sagnotti, A. (orcid)0000-0002-8525-889X aut Enthalten in Journal of high energy physics Berlin : Springer, 1997 2023(2023), 8 vom: 09. Aug. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2023 year:2023 number:8 day:09 month:08 https://dx.doi.org/10.1007/JHEP08(2023)041 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2023 2023 8 09 08 |
spelling |
10.1007/JHEP08(2023)041 doi (DE-627)SPR052702456 (SPR)JHEP08(2023)041-e DE-627 ger DE-627 rakwb eng Mourad, J. verfasserin aut Non-supersymmetric vacua and self-adjoint extensions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrödinger-like operators, whose potentials have double poles at the ends of the intervals. For one-component systems, the possible self-adjoint extensions of Schrödinger operators are described by points in AdS3 × S1, and those corresponding to independent boundary conditions at the ends of the intervals by points on the boundary of AdS3. The perturbative stability of compactifications to Minkowski space time depends, in general, on these choices of self-adjoint extensions. We apply this setup to the orientifold vacua driven by the “tadpole potential” %$ V=T\ {e}^{\frac{3}{2}\phi } %$ and find, in nine dimensions, a massive scalar spectrum, a unique choice of boundary conditions with stable tensor modes and a massless graviton, and a wide range of choices leading to massless and/or massive vector modes. Field Theories in Higher Dimensions (dpeaa)DE-He213 Superstring Vacua (dpeaa)DE-He213 Supersymmetry Breaking (dpeaa)DE-He213 Sagnotti, A. (orcid)0000-0002-8525-889X aut Enthalten in Journal of high energy physics Berlin : Springer, 1997 2023(2023), 8 vom: 09. Aug. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2023 year:2023 number:8 day:09 month:08 https://dx.doi.org/10.1007/JHEP08(2023)041 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2023 2023 8 09 08 |
allfields_unstemmed |
10.1007/JHEP08(2023)041 doi (DE-627)SPR052702456 (SPR)JHEP08(2023)041-e DE-627 ger DE-627 rakwb eng Mourad, J. verfasserin aut Non-supersymmetric vacua and self-adjoint extensions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrödinger-like operators, whose potentials have double poles at the ends of the intervals. For one-component systems, the possible self-adjoint extensions of Schrödinger operators are described by points in AdS3 × S1, and those corresponding to independent boundary conditions at the ends of the intervals by points on the boundary of AdS3. The perturbative stability of compactifications to Minkowski space time depends, in general, on these choices of self-adjoint extensions. We apply this setup to the orientifold vacua driven by the “tadpole potential” %$ V=T\ {e}^{\frac{3}{2}\phi } %$ and find, in nine dimensions, a massive scalar spectrum, a unique choice of boundary conditions with stable tensor modes and a massless graviton, and a wide range of choices leading to massless and/or massive vector modes. Field Theories in Higher Dimensions (dpeaa)DE-He213 Superstring Vacua (dpeaa)DE-He213 Supersymmetry Breaking (dpeaa)DE-He213 Sagnotti, A. (orcid)0000-0002-8525-889X aut Enthalten in Journal of high energy physics Berlin : Springer, 1997 2023(2023), 8 vom: 09. Aug. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2023 year:2023 number:8 day:09 month:08 https://dx.doi.org/10.1007/JHEP08(2023)041 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2023 2023 8 09 08 |
allfieldsGer |
10.1007/JHEP08(2023)041 doi (DE-627)SPR052702456 (SPR)JHEP08(2023)041-e DE-627 ger DE-627 rakwb eng Mourad, J. verfasserin aut Non-supersymmetric vacua and self-adjoint extensions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrödinger-like operators, whose potentials have double poles at the ends of the intervals. For one-component systems, the possible self-adjoint extensions of Schrödinger operators are described by points in AdS3 × S1, and those corresponding to independent boundary conditions at the ends of the intervals by points on the boundary of AdS3. The perturbative stability of compactifications to Minkowski space time depends, in general, on these choices of self-adjoint extensions. We apply this setup to the orientifold vacua driven by the “tadpole potential” %$ V=T\ {e}^{\frac{3}{2}\phi } %$ and find, in nine dimensions, a massive scalar spectrum, a unique choice of boundary conditions with stable tensor modes and a massless graviton, and a wide range of choices leading to massless and/or massive vector modes. Field Theories in Higher Dimensions (dpeaa)DE-He213 Superstring Vacua (dpeaa)DE-He213 Supersymmetry Breaking (dpeaa)DE-He213 Sagnotti, A. (orcid)0000-0002-8525-889X aut Enthalten in Journal of high energy physics Berlin : Springer, 1997 2023(2023), 8 vom: 09. Aug. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2023 year:2023 number:8 day:09 month:08 https://dx.doi.org/10.1007/JHEP08(2023)041 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2023 2023 8 09 08 |
allfieldsSound |
10.1007/JHEP08(2023)041 doi (DE-627)SPR052702456 (SPR)JHEP08(2023)041-e DE-627 ger DE-627 rakwb eng Mourad, J. verfasserin aut Non-supersymmetric vacua and self-adjoint extensions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrödinger-like operators, whose potentials have double poles at the ends of the intervals. For one-component systems, the possible self-adjoint extensions of Schrödinger operators are described by points in AdS3 × S1, and those corresponding to independent boundary conditions at the ends of the intervals by points on the boundary of AdS3. The perturbative stability of compactifications to Minkowski space time depends, in general, on these choices of self-adjoint extensions. We apply this setup to the orientifold vacua driven by the “tadpole potential” %$ V=T\ {e}^{\frac{3}{2}\phi } %$ and find, in nine dimensions, a massive scalar spectrum, a unique choice of boundary conditions with stable tensor modes and a massless graviton, and a wide range of choices leading to massless and/or massive vector modes. Field Theories in Higher Dimensions (dpeaa)DE-He213 Superstring Vacua (dpeaa)DE-He213 Supersymmetry Breaking (dpeaa)DE-He213 Sagnotti, A. (orcid)0000-0002-8525-889X aut Enthalten in Journal of high energy physics Berlin : Springer, 1997 2023(2023), 8 vom: 09. Aug. (DE-627)320910571 (DE-600)2027350-2 1029-8479 nnns volume:2023 year:2023 number:8 day:09 month:08 https://dx.doi.org/10.1007/JHEP08(2023)041 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2023 2023 8 09 08 |
language |
English |
source |
Enthalten in Journal of high energy physics 2023(2023), 8 vom: 09. Aug. volume:2023 year:2023 number:8 day:09 month:08 |
sourceStr |
Enthalten in Journal of high energy physics 2023(2023), 8 vom: 09. Aug. volume:2023 year:2023 number:8 day:09 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Field Theories in Higher Dimensions Superstring Vacua Supersymmetry Breaking |
isfreeaccess_bool |
true |
container_title |
Journal of high energy physics |
authorswithroles_txt_mv |
Mourad, J. @@aut@@ Sagnotti, A. @@aut@@ |
publishDateDaySort_date |
2023-08-09T00:00:00Z |
hierarchy_top_id |
320910571 |
id |
SPR052702456 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052702456</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231029064707.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230811s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP08(2023)041</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052702456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)JHEP08(2023)041-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mourad, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-supersymmetric vacua and self-adjoint extensions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrödinger-like operators, whose potentials have double poles at the ends of the intervals. For one-component systems, the possible self-adjoint extensions of Schrödinger operators are described by points in AdS3 × S1, and those corresponding to independent boundary conditions at the ends of the intervals by points on the boundary of AdS3. The perturbative stability of compactifications to Minkowski space time depends, in general, on these choices of self-adjoint extensions. We apply this setup to the orientifold vacua driven by the “tadpole potential” %$ V=T\ {e}^{\frac{3}{2}\phi } %$ and find, in nine dimensions, a massive scalar spectrum, a unique choice of boundary conditions with stable tensor modes and a massless graviton, and a wide range of choices leading to massless and/or massive vector modes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theories in Higher Dimensions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superstring Vacua</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supersymmetry Breaking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sagnotti, A.</subfield><subfield code="0">(orcid)0000-0002-8525-889X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of high energy physics</subfield><subfield code="d">Berlin : Springer, 1997</subfield><subfield code="g">2023(2023), 8 vom: 09. Aug.</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">1029-8479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2023</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8</subfield><subfield code="g">day:09</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/JHEP08(2023)041</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2023</subfield><subfield code="j">2023</subfield><subfield code="e">8</subfield><subfield code="b">09</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Mourad, J. |
spellingShingle |
Mourad, J. misc Field Theories in Higher Dimensions misc Superstring Vacua misc Supersymmetry Breaking Non-supersymmetric vacua and self-adjoint extensions |
authorStr |
Mourad, J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320910571 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1029-8479 |
topic_title |
Non-supersymmetric vacua and self-adjoint extensions Field Theories in Higher Dimensions (dpeaa)DE-He213 Superstring Vacua (dpeaa)DE-He213 Supersymmetry Breaking (dpeaa)DE-He213 |
topic |
misc Field Theories in Higher Dimensions misc Superstring Vacua misc Supersymmetry Breaking |
topic_unstemmed |
misc Field Theories in Higher Dimensions misc Superstring Vacua misc Supersymmetry Breaking |
topic_browse |
misc Field Theories in Higher Dimensions misc Superstring Vacua misc Supersymmetry Breaking |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of high energy physics |
hierarchy_parent_id |
320910571 |
hierarchy_top_title |
Journal of high energy physics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)320910571 (DE-600)2027350-2 |
title |
Non-supersymmetric vacua and self-adjoint extensions |
ctrlnum |
(DE-627)SPR052702456 (SPR)JHEP08(2023)041-e |
title_full |
Non-supersymmetric vacua and self-adjoint extensions |
author_sort |
Mourad, J. |
journal |
Journal of high energy physics |
journalStr |
Journal of high energy physics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Mourad, J. Sagnotti, A. |
container_volume |
2023 |
format_se |
Elektronische Aufsätze |
author-letter |
Mourad, J. |
doi_str_mv |
10.1007/JHEP08(2023)041 |
normlink |
(ORCID)0000-0002-8525-889X |
normlink_prefix_str_mv |
(orcid)0000-0002-8525-889X |
title_sort |
non-supersymmetric vacua and self-adjoint extensions |
title_auth |
Non-supersymmetric vacua and self-adjoint extensions |
abstract |
Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrödinger-like operators, whose potentials have double poles at the ends of the intervals. For one-component systems, the possible self-adjoint extensions of Schrödinger operators are described by points in AdS3 × S1, and those corresponding to independent boundary conditions at the ends of the intervals by points on the boundary of AdS3. The perturbative stability of compactifications to Minkowski space time depends, in general, on these choices of self-adjoint extensions. We apply this setup to the orientifold vacua driven by the “tadpole potential” %$ V=T\ {e}^{\frac{3}{2}\phi } %$ and find, in nine dimensions, a massive scalar spectrum, a unique choice of boundary conditions with stable tensor modes and a massless graviton, and a wide range of choices leading to massless and/or massive vector modes. © The Author(s) 2023 |
abstractGer |
Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrödinger-like operators, whose potentials have double poles at the ends of the intervals. For one-component systems, the possible self-adjoint extensions of Schrödinger operators are described by points in AdS3 × S1, and those corresponding to independent boundary conditions at the ends of the intervals by points on the boundary of AdS3. The perturbative stability of compactifications to Minkowski space time depends, in general, on these choices of self-adjoint extensions. We apply this setup to the orientifold vacua driven by the “tadpole potential” %$ V=T\ {e}^{\frac{3}{2}\phi } %$ and find, in nine dimensions, a massive scalar spectrum, a unique choice of boundary conditions with stable tensor modes and a massless graviton, and a wide range of choices leading to massless and/or massive vector modes. © The Author(s) 2023 |
abstract_unstemmed |
Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrödinger-like operators, whose potentials have double poles at the ends of the intervals. For one-component systems, the possible self-adjoint extensions of Schrödinger operators are described by points in AdS3 × S1, and those corresponding to independent boundary conditions at the ends of the intervals by points on the boundary of AdS3. The perturbative stability of compactifications to Minkowski space time depends, in general, on these choices of self-adjoint extensions. We apply this setup to the orientifold vacua driven by the “tadpole potential” %$ V=T\ {e}^{\frac{3}{2}\phi } %$ and find, in nine dimensions, a massive scalar spectrum, a unique choice of boundary conditions with stable tensor modes and a massless graviton, and a wide range of choices leading to massless and/or massive vector modes. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2020 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Non-supersymmetric vacua and self-adjoint extensions |
url |
https://dx.doi.org/10.1007/JHEP08(2023)041 |
remote_bool |
true |
author2 |
Sagnotti, A. |
author2Str |
Sagnotti, A. |
ppnlink |
320910571 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/JHEP08(2023)041 |
up_date |
2024-07-03T14:11:51.078Z |
_version_ |
1803567403977670656 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052702456</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231029064707.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230811s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/JHEP08(2023)041</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052702456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)JHEP08(2023)041-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mourad, J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-supersymmetric vacua and self-adjoint extensions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Internal intervals spanned by finite ranges of a conformal coordinate z and terminating at a pair of singularities are a common feature of many string compactifications with broken supersymmetry. The squared masses emerging in lower-dimensional Minkowski spaces are then eigenvalues of Schrödinger-like operators, whose potentials have double poles at the ends of the intervals. For one-component systems, the possible self-adjoint extensions of Schrödinger operators are described by points in AdS3 × S1, and those corresponding to independent boundary conditions at the ends of the intervals by points on the boundary of AdS3. The perturbative stability of compactifications to Minkowski space time depends, in general, on these choices of self-adjoint extensions. We apply this setup to the orientifold vacua driven by the “tadpole potential” %$ V=T\ {e}^{\frac{3}{2}\phi } %$ and find, in nine dimensions, a massive scalar spectrum, a unique choice of boundary conditions with stable tensor modes and a massless graviton, and a wide range of choices leading to massless and/or massive vector modes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theories in Higher Dimensions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superstring Vacua</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supersymmetry Breaking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sagnotti, A.</subfield><subfield code="0">(orcid)0000-0002-8525-889X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of high energy physics</subfield><subfield code="d">Berlin : Springer, 1997</subfield><subfield code="g">2023(2023), 8 vom: 09. Aug.</subfield><subfield code="w">(DE-627)320910571</subfield><subfield code="w">(DE-600)2027350-2</subfield><subfield code="x">1029-8479</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2023</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8</subfield><subfield code="g">day:09</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/JHEP08(2023)041</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2023</subfield><subfield code="j">2023</subfield><subfield code="e">8</subfield><subfield code="b">09</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.3985205 |