An ensemble method of the machine learning to prognosticate the gastric cancer

Abstract Gastric Cancer is the most common malignancy of the digestive tract, which is the third leading cause of cancer-related mortality worldwide. The early prognosis methods, especially Machine Learning (ML)-based approaches are one of the main strategies against GC, which have become a necessit...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Baradaran Rezaei, Hirad [verfasserIn]

Amjadian, Alireza

Sebt, Mohammad Vahid

Askari, Reza

Gharaei, Abolfazl

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Gastric cancer

Ensemble learning

Machine learning

Classification

Mutual information

Stacking

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Annals of operations research - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1984, 328(2022), 1 vom: 17. Sept., Seite 151-192

Übergeordnetes Werk:

volume:328 ; year:2022 ; number:1 ; day:17 ; month:09 ; pages:151-192

Links:

Volltext

DOI / URN:

10.1007/s10479-022-04964-1

Katalog-ID:

SPR052749193

Nicht das Richtige dabei?

Schreiben Sie uns!