Spatial and temporal changes of charosphere hotspots with or without nitrogen additions
The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified)...
Ausführliche Beschreibung
Autor*in: |
Ran, Hongyu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Biochar - Heidelberg : Springer, 2019, 5(2023), 1 vom: 18. Aug. |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2023 ; number:1 ; day:18 ; month:08 |
Links: |
---|
DOI / URN: |
10.1007/s42773-023-00247-5 |
---|
Katalog-ID: |
SPR052802108 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR052802108 | ||
003 | DE-627 | ||
005 | 20231120064821.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230819s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s42773-023-00247-5 |2 doi | |
035 | |a (DE-627)SPR052802108 | ||
035 | |a (SPR)s42773-023-00247-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ran, Hongyu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Spatial and temporal changes of charosphere hotspots with or without nitrogen additions |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified) with or without nitrogen (N) additions for 30 days and sliced at the millimeter scale for analyzing soil pH, mineral N, bacterial and fungal communities as well as the putative functions. We aimed to determine gradient distributions (in millimeter scale) of charosphere affected by biochar under different N additions. Our results showed narrower gradient changes (3 mm) of microbial community composition and wider shifts (6 mm) in pH and inorganic N contents in charosphere. The pristine biochar increased the soil pH up to 1.5 units in the charosphere, and subsequently boosted the relative abundance of Proteobacteria, Acidobacteria, and Zygomycota. With N addition, both the biochar site and charosphere were observed with decreased complexity of microbial networks, which might imply the limited microbial functionality of charosphere. These results will advance the understanding and prediction of biochar’s environmental impacts in soil. Graphical abstract | ||
520 | |a Highlights The charosphere hotspots of soil pH and mineral N content reached 6 mm.Soil microbial compositions fluctuated within 3 mm of charosphere.Pristine biochar site fostered higher fungal diversity than that in bulk soils.Lower bacterial diversity in pristine biochar site was found.The microbial network complexity declined with N addition in charosphere. | ||
650 | 4 | |a Biochar-sphere |7 (dpeaa)DE-He213 | |
650 | 4 | |a Biochemical gradients |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bacterial and fungal co-occurrence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Putative functions |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Yan |4 aut | |
700 | 1 | |a Wei, Keyu |4 aut | |
700 | 1 | |a Liu, Ying |4 aut | |
700 | 1 | |a Wang, Gang |4 aut | |
700 | 1 | |a Zhu, Kun |0 (orcid)0000-0002-2616-6645 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Biochar |d Heidelberg : Springer, 2019 |g 5(2023), 1 vom: 18. Aug. |w (DE-627)1041201680 |w (DE-600)2951502-6 |x 2524-7867 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2023 |g number:1 |g day:18 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s42773-023-00247-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 2023 |e 1 |b 18 |c 08 |
author_variant |
h r hr y w yw k w kw y l yl g w gw k z kz |
---|---|
matchkey_str |
article:25247867:2023----::ptaadeprlhneocaopeeososihrih |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s42773-023-00247-5 doi (DE-627)SPR052802108 (SPR)s42773-023-00247-5-e DE-627 ger DE-627 rakwb eng Ran, Hongyu verfasserin aut Spatial and temporal changes of charosphere hotspots with or without nitrogen additions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified) with or without nitrogen (N) additions for 30 days and sliced at the millimeter scale for analyzing soil pH, mineral N, bacterial and fungal communities as well as the putative functions. We aimed to determine gradient distributions (in millimeter scale) of charosphere affected by biochar under different N additions. Our results showed narrower gradient changes (3 mm) of microbial community composition and wider shifts (6 mm) in pH and inorganic N contents in charosphere. The pristine biochar increased the soil pH up to 1.5 units in the charosphere, and subsequently boosted the relative abundance of Proteobacteria, Acidobacteria, and Zygomycota. With N addition, both the biochar site and charosphere were observed with decreased complexity of microbial networks, which might imply the limited microbial functionality of charosphere. These results will advance the understanding and prediction of biochar’s environmental impacts in soil. Graphical abstract Highlights The charosphere hotspots of soil pH and mineral N content reached 6 mm.Soil microbial compositions fluctuated within 3 mm of charosphere.Pristine biochar site fostered higher fungal diversity than that in bulk soils.Lower bacterial diversity in pristine biochar site was found.The microbial network complexity declined with N addition in charosphere. Biochar-sphere (dpeaa)DE-He213 Biochemical gradients (dpeaa)DE-He213 Bacterial and fungal co-occurrence (dpeaa)DE-He213 Putative functions (dpeaa)DE-He213 Wang, Yan aut Wei, Keyu aut Liu, Ying aut Wang, Gang aut Zhu, Kun (orcid)0000-0002-2616-6645 aut Enthalten in Biochar Heidelberg : Springer, 2019 5(2023), 1 vom: 18. Aug. (DE-627)1041201680 (DE-600)2951502-6 2524-7867 nnns volume:5 year:2023 number:1 day:18 month:08 https://dx.doi.org/10.1007/s42773-023-00247-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 1 18 08 |
spelling |
10.1007/s42773-023-00247-5 doi (DE-627)SPR052802108 (SPR)s42773-023-00247-5-e DE-627 ger DE-627 rakwb eng Ran, Hongyu verfasserin aut Spatial and temporal changes of charosphere hotspots with or without nitrogen additions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified) with or without nitrogen (N) additions for 30 days and sliced at the millimeter scale for analyzing soil pH, mineral N, bacterial and fungal communities as well as the putative functions. We aimed to determine gradient distributions (in millimeter scale) of charosphere affected by biochar under different N additions. Our results showed narrower gradient changes (3 mm) of microbial community composition and wider shifts (6 mm) in pH and inorganic N contents in charosphere. The pristine biochar increased the soil pH up to 1.5 units in the charosphere, and subsequently boosted the relative abundance of Proteobacteria, Acidobacteria, and Zygomycota. With N addition, both the biochar site and charosphere were observed with decreased complexity of microbial networks, which might imply the limited microbial functionality of charosphere. These results will advance the understanding and prediction of biochar’s environmental impacts in soil. Graphical abstract Highlights The charosphere hotspots of soil pH and mineral N content reached 6 mm.Soil microbial compositions fluctuated within 3 mm of charosphere.Pristine biochar site fostered higher fungal diversity than that in bulk soils.Lower bacterial diversity in pristine biochar site was found.The microbial network complexity declined with N addition in charosphere. Biochar-sphere (dpeaa)DE-He213 Biochemical gradients (dpeaa)DE-He213 Bacterial and fungal co-occurrence (dpeaa)DE-He213 Putative functions (dpeaa)DE-He213 Wang, Yan aut Wei, Keyu aut Liu, Ying aut Wang, Gang aut Zhu, Kun (orcid)0000-0002-2616-6645 aut Enthalten in Biochar Heidelberg : Springer, 2019 5(2023), 1 vom: 18. Aug. (DE-627)1041201680 (DE-600)2951502-6 2524-7867 nnns volume:5 year:2023 number:1 day:18 month:08 https://dx.doi.org/10.1007/s42773-023-00247-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 1 18 08 |
allfields_unstemmed |
10.1007/s42773-023-00247-5 doi (DE-627)SPR052802108 (SPR)s42773-023-00247-5-e DE-627 ger DE-627 rakwb eng Ran, Hongyu verfasserin aut Spatial and temporal changes of charosphere hotspots with or without nitrogen additions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified) with or without nitrogen (N) additions for 30 days and sliced at the millimeter scale for analyzing soil pH, mineral N, bacterial and fungal communities as well as the putative functions. We aimed to determine gradient distributions (in millimeter scale) of charosphere affected by biochar under different N additions. Our results showed narrower gradient changes (3 mm) of microbial community composition and wider shifts (6 mm) in pH and inorganic N contents in charosphere. The pristine biochar increased the soil pH up to 1.5 units in the charosphere, and subsequently boosted the relative abundance of Proteobacteria, Acidobacteria, and Zygomycota. With N addition, both the biochar site and charosphere were observed with decreased complexity of microbial networks, which might imply the limited microbial functionality of charosphere. These results will advance the understanding and prediction of biochar’s environmental impacts in soil. Graphical abstract Highlights The charosphere hotspots of soil pH and mineral N content reached 6 mm.Soil microbial compositions fluctuated within 3 mm of charosphere.Pristine biochar site fostered higher fungal diversity than that in bulk soils.Lower bacterial diversity in pristine biochar site was found.The microbial network complexity declined with N addition in charosphere. Biochar-sphere (dpeaa)DE-He213 Biochemical gradients (dpeaa)DE-He213 Bacterial and fungal co-occurrence (dpeaa)DE-He213 Putative functions (dpeaa)DE-He213 Wang, Yan aut Wei, Keyu aut Liu, Ying aut Wang, Gang aut Zhu, Kun (orcid)0000-0002-2616-6645 aut Enthalten in Biochar Heidelberg : Springer, 2019 5(2023), 1 vom: 18. Aug. (DE-627)1041201680 (DE-600)2951502-6 2524-7867 nnns volume:5 year:2023 number:1 day:18 month:08 https://dx.doi.org/10.1007/s42773-023-00247-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 1 18 08 |
allfieldsGer |
10.1007/s42773-023-00247-5 doi (DE-627)SPR052802108 (SPR)s42773-023-00247-5-e DE-627 ger DE-627 rakwb eng Ran, Hongyu verfasserin aut Spatial and temporal changes of charosphere hotspots with or without nitrogen additions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified) with or without nitrogen (N) additions for 30 days and sliced at the millimeter scale for analyzing soil pH, mineral N, bacterial and fungal communities as well as the putative functions. We aimed to determine gradient distributions (in millimeter scale) of charosphere affected by biochar under different N additions. Our results showed narrower gradient changes (3 mm) of microbial community composition and wider shifts (6 mm) in pH and inorganic N contents in charosphere. The pristine biochar increased the soil pH up to 1.5 units in the charosphere, and subsequently boosted the relative abundance of Proteobacteria, Acidobacteria, and Zygomycota. With N addition, both the biochar site and charosphere were observed with decreased complexity of microbial networks, which might imply the limited microbial functionality of charosphere. These results will advance the understanding and prediction of biochar’s environmental impacts in soil. Graphical abstract Highlights The charosphere hotspots of soil pH and mineral N content reached 6 mm.Soil microbial compositions fluctuated within 3 mm of charosphere.Pristine biochar site fostered higher fungal diversity than that in bulk soils.Lower bacterial diversity in pristine biochar site was found.The microbial network complexity declined with N addition in charosphere. Biochar-sphere (dpeaa)DE-He213 Biochemical gradients (dpeaa)DE-He213 Bacterial and fungal co-occurrence (dpeaa)DE-He213 Putative functions (dpeaa)DE-He213 Wang, Yan aut Wei, Keyu aut Liu, Ying aut Wang, Gang aut Zhu, Kun (orcid)0000-0002-2616-6645 aut Enthalten in Biochar Heidelberg : Springer, 2019 5(2023), 1 vom: 18. Aug. (DE-627)1041201680 (DE-600)2951502-6 2524-7867 nnns volume:5 year:2023 number:1 day:18 month:08 https://dx.doi.org/10.1007/s42773-023-00247-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 1 18 08 |
allfieldsSound |
10.1007/s42773-023-00247-5 doi (DE-627)SPR052802108 (SPR)s42773-023-00247-5-e DE-627 ger DE-627 rakwb eng Ran, Hongyu verfasserin aut Spatial and temporal changes of charosphere hotspots with or without nitrogen additions 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified) with or without nitrogen (N) additions for 30 days and sliced at the millimeter scale for analyzing soil pH, mineral N, bacterial and fungal communities as well as the putative functions. We aimed to determine gradient distributions (in millimeter scale) of charosphere affected by biochar under different N additions. Our results showed narrower gradient changes (3 mm) of microbial community composition and wider shifts (6 mm) in pH and inorganic N contents in charosphere. The pristine biochar increased the soil pH up to 1.5 units in the charosphere, and subsequently boosted the relative abundance of Proteobacteria, Acidobacteria, and Zygomycota. With N addition, both the biochar site and charosphere were observed with decreased complexity of microbial networks, which might imply the limited microbial functionality of charosphere. These results will advance the understanding and prediction of biochar’s environmental impacts in soil. Graphical abstract Highlights The charosphere hotspots of soil pH and mineral N content reached 6 mm.Soil microbial compositions fluctuated within 3 mm of charosphere.Pristine biochar site fostered higher fungal diversity than that in bulk soils.Lower bacterial diversity in pristine biochar site was found.The microbial network complexity declined with N addition in charosphere. Biochar-sphere (dpeaa)DE-He213 Biochemical gradients (dpeaa)DE-He213 Bacterial and fungal co-occurrence (dpeaa)DE-He213 Putative functions (dpeaa)DE-He213 Wang, Yan aut Wei, Keyu aut Liu, Ying aut Wang, Gang aut Zhu, Kun (orcid)0000-0002-2616-6645 aut Enthalten in Biochar Heidelberg : Springer, 2019 5(2023), 1 vom: 18. Aug. (DE-627)1041201680 (DE-600)2951502-6 2524-7867 nnns volume:5 year:2023 number:1 day:18 month:08 https://dx.doi.org/10.1007/s42773-023-00247-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 AR 5 2023 1 18 08 |
language |
English |
source |
Enthalten in Biochar 5(2023), 1 vom: 18. Aug. volume:5 year:2023 number:1 day:18 month:08 |
sourceStr |
Enthalten in Biochar 5(2023), 1 vom: 18. Aug. volume:5 year:2023 number:1 day:18 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biochar-sphere Biochemical gradients Bacterial and fungal co-occurrence Putative functions |
isfreeaccess_bool |
true |
container_title |
Biochar |
authorswithroles_txt_mv |
Ran, Hongyu @@aut@@ Wang, Yan @@aut@@ Wei, Keyu @@aut@@ Liu, Ying @@aut@@ Wang, Gang @@aut@@ Zhu, Kun @@aut@@ |
publishDateDaySort_date |
2023-08-18T00:00:00Z |
hierarchy_top_id |
1041201680 |
id |
SPR052802108 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052802108</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231120064821.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230819s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42773-023-00247-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052802108</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42773-023-00247-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ran, Hongyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial and temporal changes of charosphere hotspots with or without nitrogen additions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified) with or without nitrogen (N) additions for 30 days and sliced at the millimeter scale for analyzing soil pH, mineral N, bacterial and fungal communities as well as the putative functions. We aimed to determine gradient distributions (in millimeter scale) of charosphere affected by biochar under different N additions. Our results showed narrower gradient changes (3 mm) of microbial community composition and wider shifts (6 mm) in pH and inorganic N contents in charosphere. The pristine biochar increased the soil pH up to 1.5 units in the charosphere, and subsequently boosted the relative abundance of Proteobacteria, Acidobacteria, and Zygomycota. With N addition, both the biochar site and charosphere were observed with decreased complexity of microbial networks, which might imply the limited microbial functionality of charosphere. These results will advance the understanding and prediction of biochar’s environmental impacts in soil. Graphical abstract</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights The charosphere hotspots of soil pH and mineral N content reached 6 mm.Soil microbial compositions fluctuated within 3 mm of charosphere.Pristine biochar site fostered higher fungal diversity than that in bulk soils.Lower bacterial diversity in pristine biochar site was found.The microbial network complexity declined with N addition in charosphere.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar-sphere</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochemical gradients</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacterial and fungal co-occurrence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Putative functions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Keyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Ying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Gang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Kun</subfield><subfield code="0">(orcid)0000-0002-2616-6645</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biochar</subfield><subfield code="d">Heidelberg : Springer, 2019</subfield><subfield code="g">5(2023), 1 vom: 18. Aug.</subfield><subfield code="w">(DE-627)1041201680</subfield><subfield code="w">(DE-600)2951502-6</subfield><subfield code="x">2524-7867</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42773-023-00247-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Ran, Hongyu |
spellingShingle |
Ran, Hongyu misc Biochar-sphere misc Biochemical gradients misc Bacterial and fungal co-occurrence misc Putative functions Spatial and temporal changes of charosphere hotspots with or without nitrogen additions |
authorStr |
Ran, Hongyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)1041201680 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2524-7867 |
topic_title |
Spatial and temporal changes of charosphere hotspots with or without nitrogen additions Biochar-sphere (dpeaa)DE-He213 Biochemical gradients (dpeaa)DE-He213 Bacterial and fungal co-occurrence (dpeaa)DE-He213 Putative functions (dpeaa)DE-He213 |
topic |
misc Biochar-sphere misc Biochemical gradients misc Bacterial and fungal co-occurrence misc Putative functions |
topic_unstemmed |
misc Biochar-sphere misc Biochemical gradients misc Bacterial and fungal co-occurrence misc Putative functions |
topic_browse |
misc Biochar-sphere misc Biochemical gradients misc Bacterial and fungal co-occurrence misc Putative functions |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biochar |
hierarchy_parent_id |
1041201680 |
hierarchy_top_title |
Biochar |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)1041201680 (DE-600)2951502-6 |
title |
Spatial and temporal changes of charosphere hotspots with or without nitrogen additions |
ctrlnum |
(DE-627)SPR052802108 (SPR)s42773-023-00247-5-e |
title_full |
Spatial and temporal changes of charosphere hotspots with or without nitrogen additions |
author_sort |
Ran, Hongyu |
journal |
Biochar |
journalStr |
Biochar |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Ran, Hongyu Wang, Yan Wei, Keyu Liu, Ying Wang, Gang Zhu, Kun |
container_volume |
5 |
format_se |
Elektronische Aufsätze |
author-letter |
Ran, Hongyu |
doi_str_mv |
10.1007/s42773-023-00247-5 |
normlink |
(ORCID)0000-0002-2616-6645 |
normlink_prefix_str_mv |
(orcid)0000-0002-2616-6645 |
title_sort |
spatial and temporal changes of charosphere hotspots with or without nitrogen additions |
title_auth |
Spatial and temporal changes of charosphere hotspots with or without nitrogen additions |
abstract |
The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified) with or without nitrogen (N) additions for 30 days and sliced at the millimeter scale for analyzing soil pH, mineral N, bacterial and fungal communities as well as the putative functions. We aimed to determine gradient distributions (in millimeter scale) of charosphere affected by biochar under different N additions. Our results showed narrower gradient changes (3 mm) of microbial community composition and wider shifts (6 mm) in pH and inorganic N contents in charosphere. The pristine biochar increased the soil pH up to 1.5 units in the charosphere, and subsequently boosted the relative abundance of Proteobacteria, Acidobacteria, and Zygomycota. With N addition, both the biochar site and charosphere were observed with decreased complexity of microbial networks, which might imply the limited microbial functionality of charosphere. These results will advance the understanding and prediction of biochar’s environmental impacts in soil. Graphical abstract Highlights The charosphere hotspots of soil pH and mineral N content reached 6 mm.Soil microbial compositions fluctuated within 3 mm of charosphere.Pristine biochar site fostered higher fungal diversity than that in bulk soils.Lower bacterial diversity in pristine biochar site was found.The microbial network complexity declined with N addition in charosphere. © The Author(s) 2023 |
abstractGer |
The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified) with or without nitrogen (N) additions for 30 days and sliced at the millimeter scale for analyzing soil pH, mineral N, bacterial and fungal communities as well as the putative functions. We aimed to determine gradient distributions (in millimeter scale) of charosphere affected by biochar under different N additions. Our results showed narrower gradient changes (3 mm) of microbial community composition and wider shifts (6 mm) in pH and inorganic N contents in charosphere. The pristine biochar increased the soil pH up to 1.5 units in the charosphere, and subsequently boosted the relative abundance of Proteobacteria, Acidobacteria, and Zygomycota. With N addition, both the biochar site and charosphere were observed with decreased complexity of microbial networks, which might imply the limited microbial functionality of charosphere. These results will advance the understanding and prediction of biochar’s environmental impacts in soil. Graphical abstract Highlights The charosphere hotspots of soil pH and mineral N content reached 6 mm.Soil microbial compositions fluctuated within 3 mm of charosphere.Pristine biochar site fostered higher fungal diversity than that in bulk soils.Lower bacterial diversity in pristine biochar site was found.The microbial network complexity declined with N addition in charosphere. © The Author(s) 2023 |
abstract_unstemmed |
The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified) with or without nitrogen (N) additions for 30 days and sliced at the millimeter scale for analyzing soil pH, mineral N, bacterial and fungal communities as well as the putative functions. We aimed to determine gradient distributions (in millimeter scale) of charosphere affected by biochar under different N additions. Our results showed narrower gradient changes (3 mm) of microbial community composition and wider shifts (6 mm) in pH and inorganic N contents in charosphere. The pristine biochar increased the soil pH up to 1.5 units in the charosphere, and subsequently boosted the relative abundance of Proteobacteria, Acidobacteria, and Zygomycota. With N addition, both the biochar site and charosphere were observed with decreased complexity of microbial networks, which might imply the limited microbial functionality of charosphere. These results will advance the understanding and prediction of biochar’s environmental impacts in soil. Graphical abstract Highlights The charosphere hotspots of soil pH and mineral N content reached 6 mm.Soil microbial compositions fluctuated within 3 mm of charosphere.Pristine biochar site fostered higher fungal diversity than that in bulk soils.Lower bacterial diversity in pristine biochar site was found.The microbial network complexity declined with N addition in charosphere. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Spatial and temporal changes of charosphere hotspots with or without nitrogen additions |
url |
https://dx.doi.org/10.1007/s42773-023-00247-5 |
remote_bool |
true |
author2 |
Wang, Yan Wei, Keyu Liu, Ying Wang, Gang Zhu, Kun |
author2Str |
Wang, Yan Wei, Keyu Liu, Ying Wang, Gang Zhu, Kun |
ppnlink |
1041201680 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s42773-023-00247-5 |
up_date |
2024-07-03T14:52:48.398Z |
_version_ |
1803569980668641280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052802108</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231120064821.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230819s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s42773-023-00247-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052802108</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s42773-023-00247-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ran, Hongyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial and temporal changes of charosphere hotspots with or without nitrogen additions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The charosphere is a thin soil one surrounding the biochar with highly active biochemical functions. Yet, little is known about the spatial and temporal distribution of charosphere hotspots. In this study, repacked soil cores were incubated with a central layer of biochar (pristine or acid-modified) with or without nitrogen (N) additions for 30 days and sliced at the millimeter scale for analyzing soil pH, mineral N, bacterial and fungal communities as well as the putative functions. We aimed to determine gradient distributions (in millimeter scale) of charosphere affected by biochar under different N additions. Our results showed narrower gradient changes (3 mm) of microbial community composition and wider shifts (6 mm) in pH and inorganic N contents in charosphere. The pristine biochar increased the soil pH up to 1.5 units in the charosphere, and subsequently boosted the relative abundance of Proteobacteria, Acidobacteria, and Zygomycota. With N addition, both the biochar site and charosphere were observed with decreased complexity of microbial networks, which might imply the limited microbial functionality of charosphere. These results will advance the understanding and prediction of biochar’s environmental impacts in soil. Graphical abstract</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights The charosphere hotspots of soil pH and mineral N content reached 6 mm.Soil microbial compositions fluctuated within 3 mm of charosphere.Pristine biochar site fostered higher fungal diversity than that in bulk soils.Lower bacterial diversity in pristine biochar site was found.The microbial network complexity declined with N addition in charosphere.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar-sphere</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochemical gradients</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bacterial and fungal co-occurrence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Putative functions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Keyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Ying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Gang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Kun</subfield><subfield code="0">(orcid)0000-0002-2616-6645</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biochar</subfield><subfield code="d">Heidelberg : Springer, 2019</subfield><subfield code="g">5(2023), 1 vom: 18. Aug.</subfield><subfield code="w">(DE-627)1041201680</subfield><subfield code="w">(DE-600)2951502-6</subfield><subfield code="x">2524-7867</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s42773-023-00247-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.401124 |