OUBoost: boosting based over and under sampling technique for handling imbalanced data

Abstract Most real-world datasets usually contain imbalanced data. Learning from datasets where the number of samples in one class (minority) is much smaller than in another class (majority) creates biased classifiers to the majority class. The overall prediction accuracy in imbalanced datasets is h...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Mostafaei, Sahar Hassanzadeh [verfasserIn]

Tanha, Jafar

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Imbalanced data classification

Class imbalanced problem

Over-sampling

Under-sampling

Imbalance ratio

Boosting

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: International journal of machine learning and cybernetics - Heidelberg : Springer, 2010, 14(2023), 10 vom: 10. Mai, Seite 3393-3411

Übergeordnetes Werk:

volume:14 ; year:2023 ; number:10 ; day:10 ; month:05 ; pages:3393-3411

Links:

Volltext

DOI / URN:

10.1007/s13042-023-01839-0

Katalog-ID:

SPR052831086

Nicht das Richtige dabei?

Schreiben Sie uns!