MAPredRNN: multi-attention predictive RNN for traffic flow prediction by dynamic spatio-temporal data fusion

Abstract Traffic flow prediction is a key component of intelligent transportation system, especially for increasingly complex urban traffic networks. An accurate flow prediction can help to relieve traffic congestion and reduce traffic accidents. However, the patterns of traffic flow are very comple...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Huang, Xiaohui [verfasserIn]

Jiang, Yuan

Tang, Jie

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2023

Schlagwörter:

Multi-attention

Traffic flow prediction

Spatio-temporal

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Übergeordnetes Werk:

Enthalten in: Applied intelligence - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1991, 53(2023), 16 vom: 06. März, Seite 19372-19383

Übergeordnetes Werk:

volume:53 ; year:2023 ; number:16 ; day:06 ; month:03 ; pages:19372-19383

Links:

Volltext

DOI / URN:

10.1007/s10489-023-04494-8

Katalog-ID:

SPR052895866

Nicht das Richtige dabei?

Schreiben Sie uns!