Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis
Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports t...
Ausführliche Beschreibung
Autor*in: |
Lang, Alexandra [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of neuro-oncology - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1983, 164(2023), 1 vom: Aug., Seite 211-220 |
---|---|
Übergeordnetes Werk: |
volume:164 ; year:2023 ; number:1 ; month:08 ; pages:211-220 |
Links: |
---|
DOI / URN: |
10.1007/s11060-023-04406-3 |
---|
Katalog-ID: |
SPR052897753 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR052897753 | ||
003 | DE-627 | ||
005 | 20230829064705.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230829s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11060-023-04406-3 |2 doi | |
035 | |a (DE-627)SPR052897753 | ||
035 | |a (SPR)s11060-023-04406-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Lang, Alexandra |e verfasserin |4 aut | |
245 | 1 | 0 | |a Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports that immune cells might play a role. Thus, we here provide a systematic mapping of immune infiltration of different 5-ALA fluorescence levels. Methods Tumor-associated macrophages (CD68, CD163), cytotoxic T cells (CD8), and regulatory T cells (FoxP3) were quantified via three methods. First, data from The Cancer Genome Atlas (TCGA) of 172 patients was examined for correlations between 5-ALA fluorescence-related mRNA expression signatures and immune markers. Second, as classical histology, 508 stained slides from 39 high-grade glioma patients were analysed semi-quantitatively by two independent reviewers, generating 1016 data points. Third, digital image analysis was performed with automated scanning and algorithm-based cell quantification. Results TCGA mRNA data from 172 patients showed a direct, significant correlation between 5-ALA signatures and immune markers (p < 0.001). However, we were not able to confirm this finding in the here studied initial set of 39 patient histologies where we found a comparable immune infiltration in different fluorescence levels. Digital image analysis correlated excellently with standard histology. Conclusion With mapping the immune infiltration pattern of different 5-ALA categories, we are adding fundamental basic insights to the field of 5-ALA and glioma biology. The observation that a significant correlation in TCGA data did not fully translate to detectable differences in immune infiltration in first histology data warrants further investigation in larger cohorts. | ||
650 | 4 | |a 5-ALA |7 (dpeaa)DE-He213 | |
650 | 4 | |a High-grade glioma |7 (dpeaa)DE-He213 | |
650 | 4 | |a Glioblastoma |7 (dpeaa)DE-He213 | |
650 | 4 | |a Histology |7 (dpeaa)DE-He213 | |
650 | 4 | |a Immune cells |7 (dpeaa)DE-He213 | |
650 | 4 | |a CD8 |7 (dpeaa)DE-He213 | |
650 | 4 | |a CD168 |7 (dpeaa)DE-He213 | |
650 | 4 | |a CD63 |7 (dpeaa)DE-He213 | |
650 | 4 | |a FoxP3 |7 (dpeaa)DE-He213 | |
650 | 4 | |a Automated imaging processing |7 (dpeaa)DE-He213 | |
700 | 1 | |a Jeron, Raphael L. |4 aut | |
700 | 1 | |a Lontzek, Bastian |4 aut | |
700 | 1 | |a Kiesel, Barbara |4 aut | |
700 | 1 | |a Mischkulnig, Mario |4 aut | |
700 | 1 | |a Berghoff, Anna S. |4 aut | |
700 | 1 | |a Ricken, Gerda |4 aut | |
700 | 1 | |a Wöhrer, Adelheid |4 aut | |
700 | 1 | |a Rössler, Karl |4 aut | |
700 | 1 | |a Lötsch-Gojo, Daniela |4 aut | |
700 | 1 | |a Roetzer-Pejrimovsky, Thomas |4 aut | |
700 | 1 | |a Berger, Walter |4 aut | |
700 | 1 | |a Hainfellner, Johannes A. |4 aut | |
700 | 1 | |a Höftberger, Romana |4 aut | |
700 | 1 | |a Widhalm, Georg |4 aut | |
700 | 1 | |a Erhart, Friedrich |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of neuro-oncology |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1983 |g 164(2023), 1 vom: Aug., Seite 211-220 |w (DE-627)32046122X |w (DE-600)2007293-4 |x 1573-7373 |7 nnns |
773 | 1 | 8 | |g volume:164 |g year:2023 |g number:1 |g month:08 |g pages:211-220 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11060-023-04406-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 164 |j 2023 |e 1 |c 08 |h 211-220 |
author_variant |
a l al r l j rl rlj b l bl b k bk m m mm a s b as asb g r gr a w aw k r kr d l g dlg t r p trp w b wb j a h ja jah r h rh g w gw f e fe |
---|---|
matchkey_str |
article:15737373:2023----::apnhggaeloamuenitainoaaloecneeescaaaopttocascl |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s11060-023-04406-3 doi (DE-627)SPR052897753 (SPR)s11060-023-04406-3-e DE-627 ger DE-627 rakwb eng Lang, Alexandra verfasserin aut Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports that immune cells might play a role. Thus, we here provide a systematic mapping of immune infiltration of different 5-ALA fluorescence levels. Methods Tumor-associated macrophages (CD68, CD163), cytotoxic T cells (CD8), and regulatory T cells (FoxP3) were quantified via three methods. First, data from The Cancer Genome Atlas (TCGA) of 172 patients was examined for correlations between 5-ALA fluorescence-related mRNA expression signatures and immune markers. Second, as classical histology, 508 stained slides from 39 high-grade glioma patients were analysed semi-quantitatively by two independent reviewers, generating 1016 data points. Third, digital image analysis was performed with automated scanning and algorithm-based cell quantification. Results TCGA mRNA data from 172 patients showed a direct, significant correlation between 5-ALA signatures and immune markers (p < 0.001). However, we were not able to confirm this finding in the here studied initial set of 39 patient histologies where we found a comparable immune infiltration in different fluorescence levels. Digital image analysis correlated excellently with standard histology. Conclusion With mapping the immune infiltration pattern of different 5-ALA categories, we are adding fundamental basic insights to the field of 5-ALA and glioma biology. The observation that a significant correlation in TCGA data did not fully translate to detectable differences in immune infiltration in first histology data warrants further investigation in larger cohorts. 5-ALA (dpeaa)DE-He213 High-grade glioma (dpeaa)DE-He213 Glioblastoma (dpeaa)DE-He213 Histology (dpeaa)DE-He213 Immune cells (dpeaa)DE-He213 CD8 (dpeaa)DE-He213 CD168 (dpeaa)DE-He213 CD63 (dpeaa)DE-He213 FoxP3 (dpeaa)DE-He213 Automated imaging processing (dpeaa)DE-He213 Jeron, Raphael L. aut Lontzek, Bastian aut Kiesel, Barbara aut Mischkulnig, Mario aut Berghoff, Anna S. aut Ricken, Gerda aut Wöhrer, Adelheid aut Rössler, Karl aut Lötsch-Gojo, Daniela aut Roetzer-Pejrimovsky, Thomas aut Berger, Walter aut Hainfellner, Johannes A. aut Höftberger, Romana aut Widhalm, Georg aut Erhart, Friedrich aut Enthalten in Journal of neuro-oncology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1983 164(2023), 1 vom: Aug., Seite 211-220 (DE-627)32046122X (DE-600)2007293-4 1573-7373 nnns volume:164 year:2023 number:1 month:08 pages:211-220 https://dx.doi.org/10.1007/s11060-023-04406-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 164 2023 1 08 211-220 |
spelling |
10.1007/s11060-023-04406-3 doi (DE-627)SPR052897753 (SPR)s11060-023-04406-3-e DE-627 ger DE-627 rakwb eng Lang, Alexandra verfasserin aut Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports that immune cells might play a role. Thus, we here provide a systematic mapping of immune infiltration of different 5-ALA fluorescence levels. Methods Tumor-associated macrophages (CD68, CD163), cytotoxic T cells (CD8), and regulatory T cells (FoxP3) were quantified via three methods. First, data from The Cancer Genome Atlas (TCGA) of 172 patients was examined for correlations between 5-ALA fluorescence-related mRNA expression signatures and immune markers. Second, as classical histology, 508 stained slides from 39 high-grade glioma patients were analysed semi-quantitatively by two independent reviewers, generating 1016 data points. Third, digital image analysis was performed with automated scanning and algorithm-based cell quantification. Results TCGA mRNA data from 172 patients showed a direct, significant correlation between 5-ALA signatures and immune markers (p < 0.001). However, we were not able to confirm this finding in the here studied initial set of 39 patient histologies where we found a comparable immune infiltration in different fluorescence levels. Digital image analysis correlated excellently with standard histology. Conclusion With mapping the immune infiltration pattern of different 5-ALA categories, we are adding fundamental basic insights to the field of 5-ALA and glioma biology. The observation that a significant correlation in TCGA data did not fully translate to detectable differences in immune infiltration in first histology data warrants further investigation in larger cohorts. 5-ALA (dpeaa)DE-He213 High-grade glioma (dpeaa)DE-He213 Glioblastoma (dpeaa)DE-He213 Histology (dpeaa)DE-He213 Immune cells (dpeaa)DE-He213 CD8 (dpeaa)DE-He213 CD168 (dpeaa)DE-He213 CD63 (dpeaa)DE-He213 FoxP3 (dpeaa)DE-He213 Automated imaging processing (dpeaa)DE-He213 Jeron, Raphael L. aut Lontzek, Bastian aut Kiesel, Barbara aut Mischkulnig, Mario aut Berghoff, Anna S. aut Ricken, Gerda aut Wöhrer, Adelheid aut Rössler, Karl aut Lötsch-Gojo, Daniela aut Roetzer-Pejrimovsky, Thomas aut Berger, Walter aut Hainfellner, Johannes A. aut Höftberger, Romana aut Widhalm, Georg aut Erhart, Friedrich aut Enthalten in Journal of neuro-oncology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1983 164(2023), 1 vom: Aug., Seite 211-220 (DE-627)32046122X (DE-600)2007293-4 1573-7373 nnns volume:164 year:2023 number:1 month:08 pages:211-220 https://dx.doi.org/10.1007/s11060-023-04406-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 164 2023 1 08 211-220 |
allfields_unstemmed |
10.1007/s11060-023-04406-3 doi (DE-627)SPR052897753 (SPR)s11060-023-04406-3-e DE-627 ger DE-627 rakwb eng Lang, Alexandra verfasserin aut Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports that immune cells might play a role. Thus, we here provide a systematic mapping of immune infiltration of different 5-ALA fluorescence levels. Methods Tumor-associated macrophages (CD68, CD163), cytotoxic T cells (CD8), and regulatory T cells (FoxP3) were quantified via three methods. First, data from The Cancer Genome Atlas (TCGA) of 172 patients was examined for correlations between 5-ALA fluorescence-related mRNA expression signatures and immune markers. Second, as classical histology, 508 stained slides from 39 high-grade glioma patients were analysed semi-quantitatively by two independent reviewers, generating 1016 data points. Third, digital image analysis was performed with automated scanning and algorithm-based cell quantification. Results TCGA mRNA data from 172 patients showed a direct, significant correlation between 5-ALA signatures and immune markers (p < 0.001). However, we were not able to confirm this finding in the here studied initial set of 39 patient histologies where we found a comparable immune infiltration in different fluorescence levels. Digital image analysis correlated excellently with standard histology. Conclusion With mapping the immune infiltration pattern of different 5-ALA categories, we are adding fundamental basic insights to the field of 5-ALA and glioma biology. The observation that a significant correlation in TCGA data did not fully translate to detectable differences in immune infiltration in first histology data warrants further investigation in larger cohorts. 5-ALA (dpeaa)DE-He213 High-grade glioma (dpeaa)DE-He213 Glioblastoma (dpeaa)DE-He213 Histology (dpeaa)DE-He213 Immune cells (dpeaa)DE-He213 CD8 (dpeaa)DE-He213 CD168 (dpeaa)DE-He213 CD63 (dpeaa)DE-He213 FoxP3 (dpeaa)DE-He213 Automated imaging processing (dpeaa)DE-He213 Jeron, Raphael L. aut Lontzek, Bastian aut Kiesel, Barbara aut Mischkulnig, Mario aut Berghoff, Anna S. aut Ricken, Gerda aut Wöhrer, Adelheid aut Rössler, Karl aut Lötsch-Gojo, Daniela aut Roetzer-Pejrimovsky, Thomas aut Berger, Walter aut Hainfellner, Johannes A. aut Höftberger, Romana aut Widhalm, Georg aut Erhart, Friedrich aut Enthalten in Journal of neuro-oncology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1983 164(2023), 1 vom: Aug., Seite 211-220 (DE-627)32046122X (DE-600)2007293-4 1573-7373 nnns volume:164 year:2023 number:1 month:08 pages:211-220 https://dx.doi.org/10.1007/s11060-023-04406-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 164 2023 1 08 211-220 |
allfieldsGer |
10.1007/s11060-023-04406-3 doi (DE-627)SPR052897753 (SPR)s11060-023-04406-3-e DE-627 ger DE-627 rakwb eng Lang, Alexandra verfasserin aut Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports that immune cells might play a role. Thus, we here provide a systematic mapping of immune infiltration of different 5-ALA fluorescence levels. Methods Tumor-associated macrophages (CD68, CD163), cytotoxic T cells (CD8), and regulatory T cells (FoxP3) were quantified via three methods. First, data from The Cancer Genome Atlas (TCGA) of 172 patients was examined for correlations between 5-ALA fluorescence-related mRNA expression signatures and immune markers. Second, as classical histology, 508 stained slides from 39 high-grade glioma patients were analysed semi-quantitatively by two independent reviewers, generating 1016 data points. Third, digital image analysis was performed with automated scanning and algorithm-based cell quantification. Results TCGA mRNA data from 172 patients showed a direct, significant correlation between 5-ALA signatures and immune markers (p < 0.001). However, we were not able to confirm this finding in the here studied initial set of 39 patient histologies where we found a comparable immune infiltration in different fluorescence levels. Digital image analysis correlated excellently with standard histology. Conclusion With mapping the immune infiltration pattern of different 5-ALA categories, we are adding fundamental basic insights to the field of 5-ALA and glioma biology. The observation that a significant correlation in TCGA data did not fully translate to detectable differences in immune infiltration in first histology data warrants further investigation in larger cohorts. 5-ALA (dpeaa)DE-He213 High-grade glioma (dpeaa)DE-He213 Glioblastoma (dpeaa)DE-He213 Histology (dpeaa)DE-He213 Immune cells (dpeaa)DE-He213 CD8 (dpeaa)DE-He213 CD168 (dpeaa)DE-He213 CD63 (dpeaa)DE-He213 FoxP3 (dpeaa)DE-He213 Automated imaging processing (dpeaa)DE-He213 Jeron, Raphael L. aut Lontzek, Bastian aut Kiesel, Barbara aut Mischkulnig, Mario aut Berghoff, Anna S. aut Ricken, Gerda aut Wöhrer, Adelheid aut Rössler, Karl aut Lötsch-Gojo, Daniela aut Roetzer-Pejrimovsky, Thomas aut Berger, Walter aut Hainfellner, Johannes A. aut Höftberger, Romana aut Widhalm, Georg aut Erhart, Friedrich aut Enthalten in Journal of neuro-oncology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1983 164(2023), 1 vom: Aug., Seite 211-220 (DE-627)32046122X (DE-600)2007293-4 1573-7373 nnns volume:164 year:2023 number:1 month:08 pages:211-220 https://dx.doi.org/10.1007/s11060-023-04406-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 164 2023 1 08 211-220 |
allfieldsSound |
10.1007/s11060-023-04406-3 doi (DE-627)SPR052897753 (SPR)s11060-023-04406-3-e DE-627 ger DE-627 rakwb eng Lang, Alexandra verfasserin aut Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports that immune cells might play a role. Thus, we here provide a systematic mapping of immune infiltration of different 5-ALA fluorescence levels. Methods Tumor-associated macrophages (CD68, CD163), cytotoxic T cells (CD8), and regulatory T cells (FoxP3) were quantified via three methods. First, data from The Cancer Genome Atlas (TCGA) of 172 patients was examined for correlations between 5-ALA fluorescence-related mRNA expression signatures and immune markers. Second, as classical histology, 508 stained slides from 39 high-grade glioma patients were analysed semi-quantitatively by two independent reviewers, generating 1016 data points. Third, digital image analysis was performed with automated scanning and algorithm-based cell quantification. Results TCGA mRNA data from 172 patients showed a direct, significant correlation between 5-ALA signatures and immune markers (p < 0.001). However, we were not able to confirm this finding in the here studied initial set of 39 patient histologies where we found a comparable immune infiltration in different fluorescence levels. Digital image analysis correlated excellently with standard histology. Conclusion With mapping the immune infiltration pattern of different 5-ALA categories, we are adding fundamental basic insights to the field of 5-ALA and glioma biology. The observation that a significant correlation in TCGA data did not fully translate to detectable differences in immune infiltration in first histology data warrants further investigation in larger cohorts. 5-ALA (dpeaa)DE-He213 High-grade glioma (dpeaa)DE-He213 Glioblastoma (dpeaa)DE-He213 Histology (dpeaa)DE-He213 Immune cells (dpeaa)DE-He213 CD8 (dpeaa)DE-He213 CD168 (dpeaa)DE-He213 CD63 (dpeaa)DE-He213 FoxP3 (dpeaa)DE-He213 Automated imaging processing (dpeaa)DE-He213 Jeron, Raphael L. aut Lontzek, Bastian aut Kiesel, Barbara aut Mischkulnig, Mario aut Berghoff, Anna S. aut Ricken, Gerda aut Wöhrer, Adelheid aut Rössler, Karl aut Lötsch-Gojo, Daniela aut Roetzer-Pejrimovsky, Thomas aut Berger, Walter aut Hainfellner, Johannes A. aut Höftberger, Romana aut Widhalm, Georg aut Erhart, Friedrich aut Enthalten in Journal of neuro-oncology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1983 164(2023), 1 vom: Aug., Seite 211-220 (DE-627)32046122X (DE-600)2007293-4 1573-7373 nnns volume:164 year:2023 number:1 month:08 pages:211-220 https://dx.doi.org/10.1007/s11060-023-04406-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 164 2023 1 08 211-220 |
language |
English |
source |
Enthalten in Journal of neuro-oncology 164(2023), 1 vom: Aug., Seite 211-220 volume:164 year:2023 number:1 month:08 pages:211-220 |
sourceStr |
Enthalten in Journal of neuro-oncology 164(2023), 1 vom: Aug., Seite 211-220 volume:164 year:2023 number:1 month:08 pages:211-220 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
5-ALA High-grade glioma Glioblastoma Histology Immune cells CD8 CD168 CD63 FoxP3 Automated imaging processing |
isfreeaccess_bool |
true |
container_title |
Journal of neuro-oncology |
authorswithroles_txt_mv |
Lang, Alexandra @@aut@@ Jeron, Raphael L. @@aut@@ Lontzek, Bastian @@aut@@ Kiesel, Barbara @@aut@@ Mischkulnig, Mario @@aut@@ Berghoff, Anna S. @@aut@@ Ricken, Gerda @@aut@@ Wöhrer, Adelheid @@aut@@ Rössler, Karl @@aut@@ Lötsch-Gojo, Daniela @@aut@@ Roetzer-Pejrimovsky, Thomas @@aut@@ Berger, Walter @@aut@@ Hainfellner, Johannes A. @@aut@@ Höftberger, Romana @@aut@@ Widhalm, Georg @@aut@@ Erhart, Friedrich @@aut@@ |
publishDateDaySort_date |
2023-08-01T00:00:00Z |
hierarchy_top_id |
32046122X |
id |
SPR052897753 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052897753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230829064705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230829s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11060-023-04406-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052897753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11060-023-04406-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Alexandra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports that immune cells might play a role. Thus, we here provide a systematic mapping of immune infiltration of different 5-ALA fluorescence levels. Methods Tumor-associated macrophages (CD68, CD163), cytotoxic T cells (CD8), and regulatory T cells (FoxP3) were quantified via three methods. First, data from The Cancer Genome Atlas (TCGA) of 172 patients was examined for correlations between 5-ALA fluorescence-related mRNA expression signatures and immune markers. Second, as classical histology, 508 stained slides from 39 high-grade glioma patients were analysed semi-quantitatively by two independent reviewers, generating 1016 data points. Third, digital image analysis was performed with automated scanning and algorithm-based cell quantification. Results TCGA mRNA data from 172 patients showed a direct, significant correlation between 5-ALA signatures and immune markers (p < 0.001). However, we were not able to confirm this finding in the here studied initial set of 39 patient histologies where we found a comparable immune infiltration in different fluorescence levels. Digital image analysis correlated excellently with standard histology. Conclusion With mapping the immune infiltration pattern of different 5-ALA categories, we are adding fundamental basic insights to the field of 5-ALA and glioma biology. The observation that a significant correlation in TCGA data did not fully translate to detectable differences in immune infiltration in first histology data warrants further investigation in larger cohorts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5-ALA</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-grade glioma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glioblastoma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immune cells</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CD8</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CD168</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CD63</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FoxP3</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automated imaging processing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jeron, Raphael L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lontzek, Bastian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiesel, Barbara</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mischkulnig, Mario</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berghoff, Anna S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ricken, Gerda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wöhrer, Adelheid</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rössler, Karl</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lötsch-Gojo, Daniela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roetzer-Pejrimovsky, Thomas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berger, Walter</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hainfellner, Johannes A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Höftberger, Romana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Widhalm, Georg</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Erhart, Friedrich</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of neuro-oncology</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1983</subfield><subfield code="g">164(2023), 1 vom: Aug., Seite 211-220</subfield><subfield code="w">(DE-627)32046122X</subfield><subfield code="w">(DE-600)2007293-4</subfield><subfield code="x">1573-7373</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:164</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:211-220</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11060-023-04406-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">164</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="c">08</subfield><subfield code="h">211-220</subfield></datafield></record></collection>
|
author |
Lang, Alexandra |
spellingShingle |
Lang, Alexandra misc 5-ALA misc High-grade glioma misc Glioblastoma misc Histology misc Immune cells misc CD8 misc CD168 misc CD63 misc FoxP3 misc Automated imaging processing Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis |
authorStr |
Lang, Alexandra |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32046122X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-7373 |
topic_title |
Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis 5-ALA (dpeaa)DE-He213 High-grade glioma (dpeaa)DE-He213 Glioblastoma (dpeaa)DE-He213 Histology (dpeaa)DE-He213 Immune cells (dpeaa)DE-He213 CD8 (dpeaa)DE-He213 CD168 (dpeaa)DE-He213 CD63 (dpeaa)DE-He213 FoxP3 (dpeaa)DE-He213 Automated imaging processing (dpeaa)DE-He213 |
topic |
misc 5-ALA misc High-grade glioma misc Glioblastoma misc Histology misc Immune cells misc CD8 misc CD168 misc CD63 misc FoxP3 misc Automated imaging processing |
topic_unstemmed |
misc 5-ALA misc High-grade glioma misc Glioblastoma misc Histology misc Immune cells misc CD8 misc CD168 misc CD63 misc FoxP3 misc Automated imaging processing |
topic_browse |
misc 5-ALA misc High-grade glioma misc Glioblastoma misc Histology misc Immune cells misc CD8 misc CD168 misc CD63 misc FoxP3 misc Automated imaging processing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of neuro-oncology |
hierarchy_parent_id |
32046122X |
hierarchy_top_title |
Journal of neuro-oncology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)32046122X (DE-600)2007293-4 |
title |
Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis |
ctrlnum |
(DE-627)SPR052897753 (SPR)s11060-023-04406-3-e |
title_full |
Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis |
author_sort |
Lang, Alexandra |
journal |
Journal of neuro-oncology |
journalStr |
Journal of neuro-oncology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
211 |
author_browse |
Lang, Alexandra Jeron, Raphael L. Lontzek, Bastian Kiesel, Barbara Mischkulnig, Mario Berghoff, Anna S. Ricken, Gerda Wöhrer, Adelheid Rössler, Karl Lötsch-Gojo, Daniela Roetzer-Pejrimovsky, Thomas Berger, Walter Hainfellner, Johannes A. Höftberger, Romana Widhalm, Georg Erhart, Friedrich |
container_volume |
164 |
format_se |
Elektronische Aufsätze |
author-letter |
Lang, Alexandra |
doi_str_mv |
10.1007/s11060-023-04406-3 |
title_sort |
mapping high-grade glioma immune infiltration to 5-ala fluorescence levels: tcga data computation, classical histology, and digital image analysis |
title_auth |
Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis |
abstract |
Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports that immune cells might play a role. Thus, we here provide a systematic mapping of immune infiltration of different 5-ALA fluorescence levels. Methods Tumor-associated macrophages (CD68, CD163), cytotoxic T cells (CD8), and regulatory T cells (FoxP3) were quantified via three methods. First, data from The Cancer Genome Atlas (TCGA) of 172 patients was examined for correlations between 5-ALA fluorescence-related mRNA expression signatures and immune markers. Second, as classical histology, 508 stained slides from 39 high-grade glioma patients were analysed semi-quantitatively by two independent reviewers, generating 1016 data points. Third, digital image analysis was performed with automated scanning and algorithm-based cell quantification. Results TCGA mRNA data from 172 patients showed a direct, significant correlation between 5-ALA signatures and immune markers (p < 0.001). However, we were not able to confirm this finding in the here studied initial set of 39 patient histologies where we found a comparable immune infiltration in different fluorescence levels. Digital image analysis correlated excellently with standard histology. Conclusion With mapping the immune infiltration pattern of different 5-ALA categories, we are adding fundamental basic insights to the field of 5-ALA and glioma biology. The observation that a significant correlation in TCGA data did not fully translate to detectable differences in immune infiltration in first histology data warrants further investigation in larger cohorts. © The Author(s) 2023 |
abstractGer |
Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports that immune cells might play a role. Thus, we here provide a systematic mapping of immune infiltration of different 5-ALA fluorescence levels. Methods Tumor-associated macrophages (CD68, CD163), cytotoxic T cells (CD8), and regulatory T cells (FoxP3) were quantified via three methods. First, data from The Cancer Genome Atlas (TCGA) of 172 patients was examined for correlations between 5-ALA fluorescence-related mRNA expression signatures and immune markers. Second, as classical histology, 508 stained slides from 39 high-grade glioma patients were analysed semi-quantitatively by two independent reviewers, generating 1016 data points. Third, digital image analysis was performed with automated scanning and algorithm-based cell quantification. Results TCGA mRNA data from 172 patients showed a direct, significant correlation between 5-ALA signatures and immune markers (p < 0.001). However, we were not able to confirm this finding in the here studied initial set of 39 patient histologies where we found a comparable immune infiltration in different fluorescence levels. Digital image analysis correlated excellently with standard histology. Conclusion With mapping the immune infiltration pattern of different 5-ALA categories, we are adding fundamental basic insights to the field of 5-ALA and glioma biology. The observation that a significant correlation in TCGA data did not fully translate to detectable differences in immune infiltration in first histology data warrants further investigation in larger cohorts. © The Author(s) 2023 |
abstract_unstemmed |
Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports that immune cells might play a role. Thus, we here provide a systematic mapping of immune infiltration of different 5-ALA fluorescence levels. Methods Tumor-associated macrophages (CD68, CD163), cytotoxic T cells (CD8), and regulatory T cells (FoxP3) were quantified via three methods. First, data from The Cancer Genome Atlas (TCGA) of 172 patients was examined for correlations between 5-ALA fluorescence-related mRNA expression signatures and immune markers. Second, as classical histology, 508 stained slides from 39 high-grade glioma patients were analysed semi-quantitatively by two independent reviewers, generating 1016 data points. Third, digital image analysis was performed with automated scanning and algorithm-based cell quantification. Results TCGA mRNA data from 172 patients showed a direct, significant correlation between 5-ALA signatures and immune markers (p < 0.001). However, we were not able to confirm this finding in the here studied initial set of 39 patient histologies where we found a comparable immune infiltration in different fluorescence levels. Digital image analysis correlated excellently with standard histology. Conclusion With mapping the immune infiltration pattern of different 5-ALA categories, we are adding fundamental basic insights to the field of 5-ALA and glioma biology. The observation that a significant correlation in TCGA data did not fully translate to detectable differences in immune infiltration in first histology data warrants further investigation in larger cohorts. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis |
url |
https://dx.doi.org/10.1007/s11060-023-04406-3 |
remote_bool |
true |
author2 |
Jeron, Raphael L. Lontzek, Bastian Kiesel, Barbara Mischkulnig, Mario Berghoff, Anna S. Ricken, Gerda Wöhrer, Adelheid Rössler, Karl Lötsch-Gojo, Daniela Roetzer-Pejrimovsky, Thomas Berger, Walter Hainfellner, Johannes A. Höftberger, Romana Widhalm, Georg Erhart, Friedrich |
author2Str |
Jeron, Raphael L. Lontzek, Bastian Kiesel, Barbara Mischkulnig, Mario Berghoff, Anna S. Ricken, Gerda Wöhrer, Adelheid Rössler, Karl Lötsch-Gojo, Daniela Roetzer-Pejrimovsky, Thomas Berger, Walter Hainfellner, Johannes A. Höftberger, Romana Widhalm, Georg Erhart, Friedrich |
ppnlink |
32046122X |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11060-023-04406-3 |
up_date |
2024-07-03T15:35:23.561Z |
_version_ |
1803572659950190592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052897753</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230829064705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230829s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11060-023-04406-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052897753</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11060-023-04406-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Alexandra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mapping high-grade glioma immune infiltration to 5-ALA fluorescence levels: TCGA data computation, classical histology, and digital image analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose Resection of high-grade gliomas has been considerably improved by 5-aminolevulinic acid (5-ALA). However, not all neurobiological properties of 5-ALA are fully understood. Specifically, potential differences in immune infiltration have not been conclusively examined, despite recent reports that immune cells might play a role. Thus, we here provide a systematic mapping of immune infiltration of different 5-ALA fluorescence levels. Methods Tumor-associated macrophages (CD68, CD163), cytotoxic T cells (CD8), and regulatory T cells (FoxP3) were quantified via three methods. First, data from The Cancer Genome Atlas (TCGA) of 172 patients was examined for correlations between 5-ALA fluorescence-related mRNA expression signatures and immune markers. Second, as classical histology, 508 stained slides from 39 high-grade glioma patients were analysed semi-quantitatively by two independent reviewers, generating 1016 data points. Third, digital image analysis was performed with automated scanning and algorithm-based cell quantification. Results TCGA mRNA data from 172 patients showed a direct, significant correlation between 5-ALA signatures and immune markers (p < 0.001). However, we were not able to confirm this finding in the here studied initial set of 39 patient histologies where we found a comparable immune infiltration in different fluorescence levels. Digital image analysis correlated excellently with standard histology. Conclusion With mapping the immune infiltration pattern of different 5-ALA categories, we are adding fundamental basic insights to the field of 5-ALA and glioma biology. The observation that a significant correlation in TCGA data did not fully translate to detectable differences in immune infiltration in first histology data warrants further investigation in larger cohorts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">5-ALA</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High-grade glioma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Glioblastoma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immune cells</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CD8</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CD168</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CD63</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FoxP3</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automated imaging processing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jeron, Raphael L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lontzek, Bastian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kiesel, Barbara</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mischkulnig, Mario</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berghoff, Anna S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ricken, Gerda</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wöhrer, Adelheid</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rössler, Karl</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lötsch-Gojo, Daniela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roetzer-Pejrimovsky, Thomas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berger, Walter</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hainfellner, Johannes A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Höftberger, Romana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Widhalm, Georg</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Erhart, Friedrich</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of neuro-oncology</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1983</subfield><subfield code="g">164(2023), 1 vom: Aug., Seite 211-220</subfield><subfield code="w">(DE-627)32046122X</subfield><subfield code="w">(DE-600)2007293-4</subfield><subfield code="x">1573-7373</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:164</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:211-220</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11060-023-04406-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">164</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="c">08</subfield><subfield code="h">211-220</subfield></datafield></record></collection>
|
score |
7.401473 |