Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield
Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient r...
Ausführliche Beschreibung
Autor*in: |
Das, Shaon Kumar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Biomass Conversion and Biorefinery - Berlin : Springer, 2011, 13(2021), 14 vom: 06. Nov., Seite 13051-13063 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2021 ; number:14 ; day:06 ; month:11 ; pages:13051-13063 |
Links: |
---|
DOI / URN: |
10.1007/s13399-021-02069-6 |
---|
Katalog-ID: |
SPR052947211 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR052947211 | ||
003 | DE-627 | ||
005 | 20230901064738.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230901s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s13399-021-02069-6 |2 doi | |
035 | |a (DE-627)SPR052947211 | ||
035 | |a (SPR)s13399-021-02069-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Das, Shaon Kumar |e verfasserin |0 (orcid)0000-0003-0008-5238 |4 aut | |
245 | 1 | 0 | |a Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 | ||
520 | |a Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient release patterns, leaching behavior, yield, and soil health. Biochar prepared at 600 °C, impregnated into nutrient solution for 72 h, mixed with starch-PVA binder at 1:5 ratio to achieve an even coating followed by morpho-chemical characterization through scanning electron microscope which revealed that biochar pores appear to have locked with salt crystals of N-P-K nutrients. The highly porous microstructure of the four biochar allowed it to efficiently sorb $ NO_{3} $−, $ NH_{4} $+, $ PO_{4} $3−, and $ K_{2} $O and form a nutrient-impregnated SRF. The nutrient release pattern study depicted that after 90 days of leaching the $ NO_{3} $− released 55.47–50.84%, $ NH_{4} $+ 55.47–50.84%, $ PO_{4} $3− 65.31–68.52%, and $ K_{2} $O 74.33–77.27%. Thus, leaching capacity was highest in $ NO_{3} $− followed by $ K_{2} $O > $ PO_{4} $3− > $ NH_{4} $+. Besides, among the four diverse biochar, the pine needle biochar (PNB) showed best nutrient retention/sorption capacity and lowest with maize stalk biochar (MSB). The SRF had lower nutrient release pattern than the fertilizer alone, demonstrating its slow-release behavior. After leaching with water equivalent to 462.18 mm rainfall (160 mL), approximately 47.60–58.27% $ NO_{3} $−, 47.84–65.40% $ NH_{4} $+, and 58.05–59.07% $ K_{2} $O was recovered in 40–50-cm column depth which indicated that SRF retained the nutrients in upper soil column and reduced its leaching potential. It also indicated that fertilizer was mobile as compared to the SRF. Biochar slowed the downward mobility of N and K in packed soil column. But, interestingly, phosphorus movement was enhanced by SRF in column and it increased its release potential in soil column. The crop yield (2.89–8.82%) and yield attribute characters were positively increased/enhanced by the biochar-based SRF than fertilization which was highest with BGB-SRF (black gram biochar-SRF) followed by MSB-SRF, LCB-SRF (Lantana camara biochar-SRF), and PNB-SRF. The nitrogen use efficiency followed as BGB-SRF (38.3%) > MSB-SRF (37.5%) > LCB-SRF (36.2%) > PNB-SRF (35.7%) than fertilizer (22.8%). The biochar-based SRF also improved the soil quality by increasing available nutrient (5.20–15.71%), oxidizable carbon (19.01–37.18%), and decreasing soil pH (11.74–3.73%). Soil quality improvement facilitated superior maize and black gram grain nutrient uptake (24.44–5.11%). Hence, the biochar-based SRF could be used as N-P-K-based slow-release fertilizer to maximize the functions of the N-P-K fertilizer when added to a sandy soil and minimize its environmental impact. | ||
650 | 4 | |a Biochar |7 (dpeaa)DE-He213 | |
650 | 4 | |a Slow-release fertilizer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nutrient |7 (dpeaa)DE-He213 | |
650 | 4 | |a Yield |7 (dpeaa)DE-He213 | |
650 | 4 | |a Nitrogen use efficiency |7 (dpeaa)DE-He213 | |
650 | 4 | |a Soil health |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ghosh, Goutam Kumar |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Biomass Conversion and Biorefinery |d Berlin : Springer, 2011 |g 13(2021), 14 vom: 06. Nov., Seite 13051-13063 |w (DE-627)645092843 |w (DE-600)2592298-1 |x 2190-6823 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2021 |g number:14 |g day:06 |g month:11 |g pages:13051-13063 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s13399-021-02069-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 13 |j 2021 |e 14 |b 06 |c 11 |h 13051-13063 |
author_variant |
s k d sk skd g k g gk gkg |
---|---|
matchkey_str |
article:21906823:2021----::eeoigicabsdlweesnketlzrocnrlentinrlaeni |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s13399-021-02069-6 doi (DE-627)SPR052947211 (SPR)s13399-021-02069-6-e DE-627 ger DE-627 rakwb eng Das, Shaon Kumar verfasserin (orcid)0000-0003-0008-5238 aut Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient release patterns, leaching behavior, yield, and soil health. Biochar prepared at 600 °C, impregnated into nutrient solution for 72 h, mixed with starch-PVA binder at 1:5 ratio to achieve an even coating followed by morpho-chemical characterization through scanning electron microscope which revealed that biochar pores appear to have locked with salt crystals of N-P-K nutrients. The highly porous microstructure of the four biochar allowed it to efficiently sorb $ NO_{3} $−, $ NH_{4} $+, $ PO_{4} $3−, and $ K_{2} $O and form a nutrient-impregnated SRF. The nutrient release pattern study depicted that after 90 days of leaching the $ NO_{3} $− released 55.47–50.84%, $ NH_{4} $+ 55.47–50.84%, $ PO_{4} $3− 65.31–68.52%, and $ K_{2} $O 74.33–77.27%. Thus, leaching capacity was highest in $ NO_{3} $− followed by $ K_{2} $O > $ PO_{4} $3− > $ NH_{4} $+. Besides, among the four diverse biochar, the pine needle biochar (PNB) showed best nutrient retention/sorption capacity and lowest with maize stalk biochar (MSB). The SRF had lower nutrient release pattern than the fertilizer alone, demonstrating its slow-release behavior. After leaching with water equivalent to 462.18 mm rainfall (160 mL), approximately 47.60–58.27% $ NO_{3} $−, 47.84–65.40% $ NH_{4} $+, and 58.05–59.07% $ K_{2} $O was recovered in 40–50-cm column depth which indicated that SRF retained the nutrients in upper soil column and reduced its leaching potential. It also indicated that fertilizer was mobile as compared to the SRF. Biochar slowed the downward mobility of N and K in packed soil column. But, interestingly, phosphorus movement was enhanced by SRF in column and it increased its release potential in soil column. The crop yield (2.89–8.82%) and yield attribute characters were positively increased/enhanced by the biochar-based SRF than fertilization which was highest with BGB-SRF (black gram biochar-SRF) followed by MSB-SRF, LCB-SRF (Lantana camara biochar-SRF), and PNB-SRF. The nitrogen use efficiency followed as BGB-SRF (38.3%) > MSB-SRF (37.5%) > LCB-SRF (36.2%) > PNB-SRF (35.7%) than fertilizer (22.8%). The biochar-based SRF also improved the soil quality by increasing available nutrient (5.20–15.71%), oxidizable carbon (19.01–37.18%), and decreasing soil pH (11.74–3.73%). Soil quality improvement facilitated superior maize and black gram grain nutrient uptake (24.44–5.11%). Hence, the biochar-based SRF could be used as N-P-K-based slow-release fertilizer to maximize the functions of the N-P-K fertilizer when added to a sandy soil and minimize its environmental impact. Biochar (dpeaa)DE-He213 Slow-release fertilizer (dpeaa)DE-He213 Nutrient (dpeaa)DE-He213 Yield (dpeaa)DE-He213 Nitrogen use efficiency (dpeaa)DE-He213 Soil health (dpeaa)DE-He213 Ghosh, Goutam Kumar aut Enthalten in Biomass Conversion and Biorefinery Berlin : Springer, 2011 13(2021), 14 vom: 06. Nov., Seite 13051-13063 (DE-627)645092843 (DE-600)2592298-1 2190-6823 nnns volume:13 year:2021 number:14 day:06 month:11 pages:13051-13063 https://dx.doi.org/10.1007/s13399-021-02069-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 13 2021 14 06 11 13051-13063 |
spelling |
10.1007/s13399-021-02069-6 doi (DE-627)SPR052947211 (SPR)s13399-021-02069-6-e DE-627 ger DE-627 rakwb eng Das, Shaon Kumar verfasserin (orcid)0000-0003-0008-5238 aut Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient release patterns, leaching behavior, yield, and soil health. Biochar prepared at 600 °C, impregnated into nutrient solution for 72 h, mixed with starch-PVA binder at 1:5 ratio to achieve an even coating followed by morpho-chemical characterization through scanning electron microscope which revealed that biochar pores appear to have locked with salt crystals of N-P-K nutrients. The highly porous microstructure of the four biochar allowed it to efficiently sorb $ NO_{3} $−, $ NH_{4} $+, $ PO_{4} $3−, and $ K_{2} $O and form a nutrient-impregnated SRF. The nutrient release pattern study depicted that after 90 days of leaching the $ NO_{3} $− released 55.47–50.84%, $ NH_{4} $+ 55.47–50.84%, $ PO_{4} $3− 65.31–68.52%, and $ K_{2} $O 74.33–77.27%. Thus, leaching capacity was highest in $ NO_{3} $− followed by $ K_{2} $O > $ PO_{4} $3− > $ NH_{4} $+. Besides, among the four diverse biochar, the pine needle biochar (PNB) showed best nutrient retention/sorption capacity and lowest with maize stalk biochar (MSB). The SRF had lower nutrient release pattern than the fertilizer alone, demonstrating its slow-release behavior. After leaching with water equivalent to 462.18 mm rainfall (160 mL), approximately 47.60–58.27% $ NO_{3} $−, 47.84–65.40% $ NH_{4} $+, and 58.05–59.07% $ K_{2} $O was recovered in 40–50-cm column depth which indicated that SRF retained the nutrients in upper soil column and reduced its leaching potential. It also indicated that fertilizer was mobile as compared to the SRF. Biochar slowed the downward mobility of N and K in packed soil column. But, interestingly, phosphorus movement was enhanced by SRF in column and it increased its release potential in soil column. The crop yield (2.89–8.82%) and yield attribute characters were positively increased/enhanced by the biochar-based SRF than fertilization which was highest with BGB-SRF (black gram biochar-SRF) followed by MSB-SRF, LCB-SRF (Lantana camara biochar-SRF), and PNB-SRF. The nitrogen use efficiency followed as BGB-SRF (38.3%) > MSB-SRF (37.5%) > LCB-SRF (36.2%) > PNB-SRF (35.7%) than fertilizer (22.8%). The biochar-based SRF also improved the soil quality by increasing available nutrient (5.20–15.71%), oxidizable carbon (19.01–37.18%), and decreasing soil pH (11.74–3.73%). Soil quality improvement facilitated superior maize and black gram grain nutrient uptake (24.44–5.11%). Hence, the biochar-based SRF could be used as N-P-K-based slow-release fertilizer to maximize the functions of the N-P-K fertilizer when added to a sandy soil and minimize its environmental impact. Biochar (dpeaa)DE-He213 Slow-release fertilizer (dpeaa)DE-He213 Nutrient (dpeaa)DE-He213 Yield (dpeaa)DE-He213 Nitrogen use efficiency (dpeaa)DE-He213 Soil health (dpeaa)DE-He213 Ghosh, Goutam Kumar aut Enthalten in Biomass Conversion and Biorefinery Berlin : Springer, 2011 13(2021), 14 vom: 06. Nov., Seite 13051-13063 (DE-627)645092843 (DE-600)2592298-1 2190-6823 nnns volume:13 year:2021 number:14 day:06 month:11 pages:13051-13063 https://dx.doi.org/10.1007/s13399-021-02069-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 13 2021 14 06 11 13051-13063 |
allfields_unstemmed |
10.1007/s13399-021-02069-6 doi (DE-627)SPR052947211 (SPR)s13399-021-02069-6-e DE-627 ger DE-627 rakwb eng Das, Shaon Kumar verfasserin (orcid)0000-0003-0008-5238 aut Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient release patterns, leaching behavior, yield, and soil health. Biochar prepared at 600 °C, impregnated into nutrient solution for 72 h, mixed with starch-PVA binder at 1:5 ratio to achieve an even coating followed by morpho-chemical characterization through scanning electron microscope which revealed that biochar pores appear to have locked with salt crystals of N-P-K nutrients. The highly porous microstructure of the four biochar allowed it to efficiently sorb $ NO_{3} $−, $ NH_{4} $+, $ PO_{4} $3−, and $ K_{2} $O and form a nutrient-impregnated SRF. The nutrient release pattern study depicted that after 90 days of leaching the $ NO_{3} $− released 55.47–50.84%, $ NH_{4} $+ 55.47–50.84%, $ PO_{4} $3− 65.31–68.52%, and $ K_{2} $O 74.33–77.27%. Thus, leaching capacity was highest in $ NO_{3} $− followed by $ K_{2} $O > $ PO_{4} $3− > $ NH_{4} $+. Besides, among the four diverse biochar, the pine needle biochar (PNB) showed best nutrient retention/sorption capacity and lowest with maize stalk biochar (MSB). The SRF had lower nutrient release pattern than the fertilizer alone, demonstrating its slow-release behavior. After leaching with water equivalent to 462.18 mm rainfall (160 mL), approximately 47.60–58.27% $ NO_{3} $−, 47.84–65.40% $ NH_{4} $+, and 58.05–59.07% $ K_{2} $O was recovered in 40–50-cm column depth which indicated that SRF retained the nutrients in upper soil column and reduced its leaching potential. It also indicated that fertilizer was mobile as compared to the SRF. Biochar slowed the downward mobility of N and K in packed soil column. But, interestingly, phosphorus movement was enhanced by SRF in column and it increased its release potential in soil column. The crop yield (2.89–8.82%) and yield attribute characters were positively increased/enhanced by the biochar-based SRF than fertilization which was highest with BGB-SRF (black gram biochar-SRF) followed by MSB-SRF, LCB-SRF (Lantana camara biochar-SRF), and PNB-SRF. The nitrogen use efficiency followed as BGB-SRF (38.3%) > MSB-SRF (37.5%) > LCB-SRF (36.2%) > PNB-SRF (35.7%) than fertilizer (22.8%). The biochar-based SRF also improved the soil quality by increasing available nutrient (5.20–15.71%), oxidizable carbon (19.01–37.18%), and decreasing soil pH (11.74–3.73%). Soil quality improvement facilitated superior maize and black gram grain nutrient uptake (24.44–5.11%). Hence, the biochar-based SRF could be used as N-P-K-based slow-release fertilizer to maximize the functions of the N-P-K fertilizer when added to a sandy soil and minimize its environmental impact. Biochar (dpeaa)DE-He213 Slow-release fertilizer (dpeaa)DE-He213 Nutrient (dpeaa)DE-He213 Yield (dpeaa)DE-He213 Nitrogen use efficiency (dpeaa)DE-He213 Soil health (dpeaa)DE-He213 Ghosh, Goutam Kumar aut Enthalten in Biomass Conversion and Biorefinery Berlin : Springer, 2011 13(2021), 14 vom: 06. Nov., Seite 13051-13063 (DE-627)645092843 (DE-600)2592298-1 2190-6823 nnns volume:13 year:2021 number:14 day:06 month:11 pages:13051-13063 https://dx.doi.org/10.1007/s13399-021-02069-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 13 2021 14 06 11 13051-13063 |
allfieldsGer |
10.1007/s13399-021-02069-6 doi (DE-627)SPR052947211 (SPR)s13399-021-02069-6-e DE-627 ger DE-627 rakwb eng Das, Shaon Kumar verfasserin (orcid)0000-0003-0008-5238 aut Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient release patterns, leaching behavior, yield, and soil health. Biochar prepared at 600 °C, impregnated into nutrient solution for 72 h, mixed with starch-PVA binder at 1:5 ratio to achieve an even coating followed by morpho-chemical characterization through scanning electron microscope which revealed that biochar pores appear to have locked with salt crystals of N-P-K nutrients. The highly porous microstructure of the four biochar allowed it to efficiently sorb $ NO_{3} $−, $ NH_{4} $+, $ PO_{4} $3−, and $ K_{2} $O and form a nutrient-impregnated SRF. The nutrient release pattern study depicted that after 90 days of leaching the $ NO_{3} $− released 55.47–50.84%, $ NH_{4} $+ 55.47–50.84%, $ PO_{4} $3− 65.31–68.52%, and $ K_{2} $O 74.33–77.27%. Thus, leaching capacity was highest in $ NO_{3} $− followed by $ K_{2} $O > $ PO_{4} $3− > $ NH_{4} $+. Besides, among the four diverse biochar, the pine needle biochar (PNB) showed best nutrient retention/sorption capacity and lowest with maize stalk biochar (MSB). The SRF had lower nutrient release pattern than the fertilizer alone, demonstrating its slow-release behavior. After leaching with water equivalent to 462.18 mm rainfall (160 mL), approximately 47.60–58.27% $ NO_{3} $−, 47.84–65.40% $ NH_{4} $+, and 58.05–59.07% $ K_{2} $O was recovered in 40–50-cm column depth which indicated that SRF retained the nutrients in upper soil column and reduced its leaching potential. It also indicated that fertilizer was mobile as compared to the SRF. Biochar slowed the downward mobility of N and K in packed soil column. But, interestingly, phosphorus movement was enhanced by SRF in column and it increased its release potential in soil column. The crop yield (2.89–8.82%) and yield attribute characters were positively increased/enhanced by the biochar-based SRF than fertilization which was highest with BGB-SRF (black gram biochar-SRF) followed by MSB-SRF, LCB-SRF (Lantana camara biochar-SRF), and PNB-SRF. The nitrogen use efficiency followed as BGB-SRF (38.3%) > MSB-SRF (37.5%) > LCB-SRF (36.2%) > PNB-SRF (35.7%) than fertilizer (22.8%). The biochar-based SRF also improved the soil quality by increasing available nutrient (5.20–15.71%), oxidizable carbon (19.01–37.18%), and decreasing soil pH (11.74–3.73%). Soil quality improvement facilitated superior maize and black gram grain nutrient uptake (24.44–5.11%). Hence, the biochar-based SRF could be used as N-P-K-based slow-release fertilizer to maximize the functions of the N-P-K fertilizer when added to a sandy soil and minimize its environmental impact. Biochar (dpeaa)DE-He213 Slow-release fertilizer (dpeaa)DE-He213 Nutrient (dpeaa)DE-He213 Yield (dpeaa)DE-He213 Nitrogen use efficiency (dpeaa)DE-He213 Soil health (dpeaa)DE-He213 Ghosh, Goutam Kumar aut Enthalten in Biomass Conversion and Biorefinery Berlin : Springer, 2011 13(2021), 14 vom: 06. Nov., Seite 13051-13063 (DE-627)645092843 (DE-600)2592298-1 2190-6823 nnns volume:13 year:2021 number:14 day:06 month:11 pages:13051-13063 https://dx.doi.org/10.1007/s13399-021-02069-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 13 2021 14 06 11 13051-13063 |
allfieldsSound |
10.1007/s13399-021-02069-6 doi (DE-627)SPR052947211 (SPR)s13399-021-02069-6-e DE-627 ger DE-627 rakwb eng Das, Shaon Kumar verfasserin (orcid)0000-0003-0008-5238 aut Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield 2021 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient release patterns, leaching behavior, yield, and soil health. Biochar prepared at 600 °C, impregnated into nutrient solution for 72 h, mixed with starch-PVA binder at 1:5 ratio to achieve an even coating followed by morpho-chemical characterization through scanning electron microscope which revealed that biochar pores appear to have locked with salt crystals of N-P-K nutrients. The highly porous microstructure of the four biochar allowed it to efficiently sorb $ NO_{3} $−, $ NH_{4} $+, $ PO_{4} $3−, and $ K_{2} $O and form a nutrient-impregnated SRF. The nutrient release pattern study depicted that after 90 days of leaching the $ NO_{3} $− released 55.47–50.84%, $ NH_{4} $+ 55.47–50.84%, $ PO_{4} $3− 65.31–68.52%, and $ K_{2} $O 74.33–77.27%. Thus, leaching capacity was highest in $ NO_{3} $− followed by $ K_{2} $O > $ PO_{4} $3− > $ NH_{4} $+. Besides, among the four diverse biochar, the pine needle biochar (PNB) showed best nutrient retention/sorption capacity and lowest with maize stalk biochar (MSB). The SRF had lower nutrient release pattern than the fertilizer alone, demonstrating its slow-release behavior. After leaching with water equivalent to 462.18 mm rainfall (160 mL), approximately 47.60–58.27% $ NO_{3} $−, 47.84–65.40% $ NH_{4} $+, and 58.05–59.07% $ K_{2} $O was recovered in 40–50-cm column depth which indicated that SRF retained the nutrients in upper soil column and reduced its leaching potential. It also indicated that fertilizer was mobile as compared to the SRF. Biochar slowed the downward mobility of N and K in packed soil column. But, interestingly, phosphorus movement was enhanced by SRF in column and it increased its release potential in soil column. The crop yield (2.89–8.82%) and yield attribute characters were positively increased/enhanced by the biochar-based SRF than fertilization which was highest with BGB-SRF (black gram biochar-SRF) followed by MSB-SRF, LCB-SRF (Lantana camara biochar-SRF), and PNB-SRF. The nitrogen use efficiency followed as BGB-SRF (38.3%) > MSB-SRF (37.5%) > LCB-SRF (36.2%) > PNB-SRF (35.7%) than fertilizer (22.8%). The biochar-based SRF also improved the soil quality by increasing available nutrient (5.20–15.71%), oxidizable carbon (19.01–37.18%), and decreasing soil pH (11.74–3.73%). Soil quality improvement facilitated superior maize and black gram grain nutrient uptake (24.44–5.11%). Hence, the biochar-based SRF could be used as N-P-K-based slow-release fertilizer to maximize the functions of the N-P-K fertilizer when added to a sandy soil and minimize its environmental impact. Biochar (dpeaa)DE-He213 Slow-release fertilizer (dpeaa)DE-He213 Nutrient (dpeaa)DE-He213 Yield (dpeaa)DE-He213 Nitrogen use efficiency (dpeaa)DE-He213 Soil health (dpeaa)DE-He213 Ghosh, Goutam Kumar aut Enthalten in Biomass Conversion and Biorefinery Berlin : Springer, 2011 13(2021), 14 vom: 06. Nov., Seite 13051-13063 (DE-627)645092843 (DE-600)2592298-1 2190-6823 nnns volume:13 year:2021 number:14 day:06 month:11 pages:13051-13063 https://dx.doi.org/10.1007/s13399-021-02069-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 13 2021 14 06 11 13051-13063 |
language |
English |
source |
Enthalten in Biomass Conversion and Biorefinery 13(2021), 14 vom: 06. Nov., Seite 13051-13063 volume:13 year:2021 number:14 day:06 month:11 pages:13051-13063 |
sourceStr |
Enthalten in Biomass Conversion and Biorefinery 13(2021), 14 vom: 06. Nov., Seite 13051-13063 volume:13 year:2021 number:14 day:06 month:11 pages:13051-13063 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biochar Slow-release fertilizer Nutrient Yield Nitrogen use efficiency Soil health |
isfreeaccess_bool |
false |
container_title |
Biomass Conversion and Biorefinery |
authorswithroles_txt_mv |
Das, Shaon Kumar @@aut@@ Ghosh, Goutam Kumar @@aut@@ |
publishDateDaySort_date |
2021-11-06T00:00:00Z |
hierarchy_top_id |
645092843 |
id |
SPR052947211 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052947211</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230901064738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230901s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13399-021-02069-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052947211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13399-021-02069-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Das, Shaon Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0008-5238</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient release patterns, leaching behavior, yield, and soil health. Biochar prepared at 600 °C, impregnated into nutrient solution for 72 h, mixed with starch-PVA binder at 1:5 ratio to achieve an even coating followed by morpho-chemical characterization through scanning electron microscope which revealed that biochar pores appear to have locked with salt crystals of N-P-K nutrients. The highly porous microstructure of the four biochar allowed it to efficiently sorb $ NO_{3} $−, $ NH_{4} $+, $ PO_{4} $3−, and $ K_{2} $O and form a nutrient-impregnated SRF. The nutrient release pattern study depicted that after 90 days of leaching the $ NO_{3} $− released 55.47–50.84%, $ NH_{4} $+ 55.47–50.84%, $ PO_{4} $3− 65.31–68.52%, and $ K_{2} $O 74.33–77.27%. Thus, leaching capacity was highest in $ NO_{3} $− followed by $ K_{2} $O > $ PO_{4} $3− > $ NH_{4} $+. Besides, among the four diverse biochar, the pine needle biochar (PNB) showed best nutrient retention/sorption capacity and lowest with maize stalk biochar (MSB). The SRF had lower nutrient release pattern than the fertilizer alone, demonstrating its slow-release behavior. After leaching with water equivalent to 462.18 mm rainfall (160 mL), approximately 47.60–58.27% $ NO_{3} $−, 47.84–65.40% $ NH_{4} $+, and 58.05–59.07% $ K_{2} $O was recovered in 40–50-cm column depth which indicated that SRF retained the nutrients in upper soil column and reduced its leaching potential. It also indicated that fertilizer was mobile as compared to the SRF. Biochar slowed the downward mobility of N and K in packed soil column. But, interestingly, phosphorus movement was enhanced by SRF in column and it increased its release potential in soil column. The crop yield (2.89–8.82%) and yield attribute characters were positively increased/enhanced by the biochar-based SRF than fertilization which was highest with BGB-SRF (black gram biochar-SRF) followed by MSB-SRF, LCB-SRF (Lantana camara biochar-SRF), and PNB-SRF. The nitrogen use efficiency followed as BGB-SRF (38.3%) > MSB-SRF (37.5%) > LCB-SRF (36.2%) > PNB-SRF (35.7%) than fertilizer (22.8%). The biochar-based SRF also improved the soil quality by increasing available nutrient (5.20–15.71%), oxidizable carbon (19.01–37.18%), and decreasing soil pH (11.74–3.73%). Soil quality improvement facilitated superior maize and black gram grain nutrient uptake (24.44–5.11%). Hence, the biochar-based SRF could be used as N-P-K-based slow-release fertilizer to maximize the functions of the N-P-K fertilizer when added to a sandy soil and minimize its environmental impact.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slow-release fertilizer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrogen use efficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil health</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghosh, Goutam Kumar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biomass Conversion and Biorefinery</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">13(2021), 14 vom: 06. Nov., Seite 13051-13063</subfield><subfield code="w">(DE-627)645092843</subfield><subfield code="w">(DE-600)2592298-1</subfield><subfield code="x">2190-6823</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:14</subfield><subfield code="g">day:06</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:13051-13063</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13399-021-02069-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">14</subfield><subfield code="b">06</subfield><subfield code="c">11</subfield><subfield code="h">13051-13063</subfield></datafield></record></collection>
|
author |
Das, Shaon Kumar |
spellingShingle |
Das, Shaon Kumar misc Biochar misc Slow-release fertilizer misc Nutrient misc Yield misc Nitrogen use efficiency misc Soil health Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield |
authorStr |
Das, Shaon Kumar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)645092843 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2190-6823 |
topic_title |
Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield Biochar (dpeaa)DE-He213 Slow-release fertilizer (dpeaa)DE-He213 Nutrient (dpeaa)DE-He213 Yield (dpeaa)DE-He213 Nitrogen use efficiency (dpeaa)DE-He213 Soil health (dpeaa)DE-He213 |
topic |
misc Biochar misc Slow-release fertilizer misc Nutrient misc Yield misc Nitrogen use efficiency misc Soil health |
topic_unstemmed |
misc Biochar misc Slow-release fertilizer misc Nutrient misc Yield misc Nitrogen use efficiency misc Soil health |
topic_browse |
misc Biochar misc Slow-release fertilizer misc Nutrient misc Yield misc Nitrogen use efficiency misc Soil health |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biomass Conversion and Biorefinery |
hierarchy_parent_id |
645092843 |
hierarchy_top_title |
Biomass Conversion and Biorefinery |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)645092843 (DE-600)2592298-1 |
title |
Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield |
ctrlnum |
(DE-627)SPR052947211 (SPR)s13399-021-02069-6-e |
title_full |
Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield |
author_sort |
Das, Shaon Kumar |
journal |
Biomass Conversion and Biorefinery |
journalStr |
Biomass Conversion and Biorefinery |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
13051 |
author_browse |
Das, Shaon Kumar Ghosh, Goutam Kumar |
container_volume |
13 |
format_se |
Elektronische Aufsätze |
author-letter |
Das, Shaon Kumar |
doi_str_mv |
10.1007/s13399-021-02069-6 |
normlink |
(ORCID)0000-0003-0008-5238 |
normlink_prefix_str_mv |
(orcid)0000-0003-0008-5238 |
title_sort |
developing biochar-based slow-release n-p-k fertilizer for controlled nutrient release and its impact on soil health and yield |
title_auth |
Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield |
abstract |
Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient release patterns, leaching behavior, yield, and soil health. Biochar prepared at 600 °C, impregnated into nutrient solution for 72 h, mixed with starch-PVA binder at 1:5 ratio to achieve an even coating followed by morpho-chemical characterization through scanning electron microscope which revealed that biochar pores appear to have locked with salt crystals of N-P-K nutrients. The highly porous microstructure of the four biochar allowed it to efficiently sorb $ NO_{3} $−, $ NH_{4} $+, $ PO_{4} $3−, and $ K_{2} $O and form a nutrient-impregnated SRF. The nutrient release pattern study depicted that after 90 days of leaching the $ NO_{3} $− released 55.47–50.84%, $ NH_{4} $+ 55.47–50.84%, $ PO_{4} $3− 65.31–68.52%, and $ K_{2} $O 74.33–77.27%. Thus, leaching capacity was highest in $ NO_{3} $− followed by $ K_{2} $O > $ PO_{4} $3− > $ NH_{4} $+. Besides, among the four diverse biochar, the pine needle biochar (PNB) showed best nutrient retention/sorption capacity and lowest with maize stalk biochar (MSB). The SRF had lower nutrient release pattern than the fertilizer alone, demonstrating its slow-release behavior. After leaching with water equivalent to 462.18 mm rainfall (160 mL), approximately 47.60–58.27% $ NO_{3} $−, 47.84–65.40% $ NH_{4} $+, and 58.05–59.07% $ K_{2} $O was recovered in 40–50-cm column depth which indicated that SRF retained the nutrients in upper soil column and reduced its leaching potential. It also indicated that fertilizer was mobile as compared to the SRF. Biochar slowed the downward mobility of N and K in packed soil column. But, interestingly, phosphorus movement was enhanced by SRF in column and it increased its release potential in soil column. The crop yield (2.89–8.82%) and yield attribute characters were positively increased/enhanced by the biochar-based SRF than fertilization which was highest with BGB-SRF (black gram biochar-SRF) followed by MSB-SRF, LCB-SRF (Lantana camara biochar-SRF), and PNB-SRF. The nitrogen use efficiency followed as BGB-SRF (38.3%) > MSB-SRF (37.5%) > LCB-SRF (36.2%) > PNB-SRF (35.7%) than fertilizer (22.8%). The biochar-based SRF also improved the soil quality by increasing available nutrient (5.20–15.71%), oxidizable carbon (19.01–37.18%), and decreasing soil pH (11.74–3.73%). Soil quality improvement facilitated superior maize and black gram grain nutrient uptake (24.44–5.11%). Hence, the biochar-based SRF could be used as N-P-K-based slow-release fertilizer to maximize the functions of the N-P-K fertilizer when added to a sandy soil and minimize its environmental impact. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstractGer |
Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient release patterns, leaching behavior, yield, and soil health. Biochar prepared at 600 °C, impregnated into nutrient solution for 72 h, mixed with starch-PVA binder at 1:5 ratio to achieve an even coating followed by morpho-chemical characterization through scanning electron microscope which revealed that biochar pores appear to have locked with salt crystals of N-P-K nutrients. The highly porous microstructure of the four biochar allowed it to efficiently sorb $ NO_{3} $−, $ NH_{4} $+, $ PO_{4} $3−, and $ K_{2} $O and form a nutrient-impregnated SRF. The nutrient release pattern study depicted that after 90 days of leaching the $ NO_{3} $− released 55.47–50.84%, $ NH_{4} $+ 55.47–50.84%, $ PO_{4} $3− 65.31–68.52%, and $ K_{2} $O 74.33–77.27%. Thus, leaching capacity was highest in $ NO_{3} $− followed by $ K_{2} $O > $ PO_{4} $3− > $ NH_{4} $+. Besides, among the four diverse biochar, the pine needle biochar (PNB) showed best nutrient retention/sorption capacity and lowest with maize stalk biochar (MSB). The SRF had lower nutrient release pattern than the fertilizer alone, demonstrating its slow-release behavior. After leaching with water equivalent to 462.18 mm rainfall (160 mL), approximately 47.60–58.27% $ NO_{3} $−, 47.84–65.40% $ NH_{4} $+, and 58.05–59.07% $ K_{2} $O was recovered in 40–50-cm column depth which indicated that SRF retained the nutrients in upper soil column and reduced its leaching potential. It also indicated that fertilizer was mobile as compared to the SRF. Biochar slowed the downward mobility of N and K in packed soil column. But, interestingly, phosphorus movement was enhanced by SRF in column and it increased its release potential in soil column. The crop yield (2.89–8.82%) and yield attribute characters were positively increased/enhanced by the biochar-based SRF than fertilization which was highest with BGB-SRF (black gram biochar-SRF) followed by MSB-SRF, LCB-SRF (Lantana camara biochar-SRF), and PNB-SRF. The nitrogen use efficiency followed as BGB-SRF (38.3%) > MSB-SRF (37.5%) > LCB-SRF (36.2%) > PNB-SRF (35.7%) than fertilizer (22.8%). The biochar-based SRF also improved the soil quality by increasing available nutrient (5.20–15.71%), oxidizable carbon (19.01–37.18%), and decreasing soil pH (11.74–3.73%). Soil quality improvement facilitated superior maize and black gram grain nutrient uptake (24.44–5.11%). Hence, the biochar-based SRF could be used as N-P-K-based slow-release fertilizer to maximize the functions of the N-P-K fertilizer when added to a sandy soil and minimize its environmental impact. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient release patterns, leaching behavior, yield, and soil health. Biochar prepared at 600 °C, impregnated into nutrient solution for 72 h, mixed with starch-PVA binder at 1:5 ratio to achieve an even coating followed by morpho-chemical characterization through scanning electron microscope which revealed that biochar pores appear to have locked with salt crystals of N-P-K nutrients. The highly porous microstructure of the four biochar allowed it to efficiently sorb $ NO_{3} $−, $ NH_{4} $+, $ PO_{4} $3−, and $ K_{2} $O and form a nutrient-impregnated SRF. The nutrient release pattern study depicted that after 90 days of leaching the $ NO_{3} $− released 55.47–50.84%, $ NH_{4} $+ 55.47–50.84%, $ PO_{4} $3− 65.31–68.52%, and $ K_{2} $O 74.33–77.27%. Thus, leaching capacity was highest in $ NO_{3} $− followed by $ K_{2} $O > $ PO_{4} $3− > $ NH_{4} $+. Besides, among the four diverse biochar, the pine needle biochar (PNB) showed best nutrient retention/sorption capacity and lowest with maize stalk biochar (MSB). The SRF had lower nutrient release pattern than the fertilizer alone, demonstrating its slow-release behavior. After leaching with water equivalent to 462.18 mm rainfall (160 mL), approximately 47.60–58.27% $ NO_{3} $−, 47.84–65.40% $ NH_{4} $+, and 58.05–59.07% $ K_{2} $O was recovered in 40–50-cm column depth which indicated that SRF retained the nutrients in upper soil column and reduced its leaching potential. It also indicated that fertilizer was mobile as compared to the SRF. Biochar slowed the downward mobility of N and K in packed soil column. But, interestingly, phosphorus movement was enhanced by SRF in column and it increased its release potential in soil column. The crop yield (2.89–8.82%) and yield attribute characters were positively increased/enhanced by the biochar-based SRF than fertilization which was highest with BGB-SRF (black gram biochar-SRF) followed by MSB-SRF, LCB-SRF (Lantana camara biochar-SRF), and PNB-SRF. The nitrogen use efficiency followed as BGB-SRF (38.3%) > MSB-SRF (37.5%) > LCB-SRF (36.2%) > PNB-SRF (35.7%) than fertilizer (22.8%). The biochar-based SRF also improved the soil quality by increasing available nutrient (5.20–15.71%), oxidizable carbon (19.01–37.18%), and decreasing soil pH (11.74–3.73%). Soil quality improvement facilitated superior maize and black gram grain nutrient uptake (24.44–5.11%). Hence, the biochar-based SRF could be used as N-P-K-based slow-release fertilizer to maximize the functions of the N-P-K fertilizer when added to a sandy soil and minimize its environmental impact. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
14 |
title_short |
Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield |
url |
https://dx.doi.org/10.1007/s13399-021-02069-6 |
remote_bool |
true |
author2 |
Ghosh, Goutam Kumar |
author2Str |
Ghosh, Goutam Kumar |
ppnlink |
645092843 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s13399-021-02069-6 |
up_date |
2024-07-03T15:56:57.919Z |
_version_ |
1803574017178730496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052947211</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230901064738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230901s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s13399-021-02069-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052947211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13399-021-02069-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Das, Shaon Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0008-5238</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There has been an augmented attention for broad application of biochar-based slow-release fertilizer (SRF) to agricultural soils in recent years. It was synthesized four dissimilar biochar-based slow-release N-P-K fertilizer using nutrient impregnation technique and evaluated for nutrient release patterns, leaching behavior, yield, and soil health. Biochar prepared at 600 °C, impregnated into nutrient solution for 72 h, mixed with starch-PVA binder at 1:5 ratio to achieve an even coating followed by morpho-chemical characterization through scanning electron microscope which revealed that biochar pores appear to have locked with salt crystals of N-P-K nutrients. The highly porous microstructure of the four biochar allowed it to efficiently sorb $ NO_{3} $−, $ NH_{4} $+, $ PO_{4} $3−, and $ K_{2} $O and form a nutrient-impregnated SRF. The nutrient release pattern study depicted that after 90 days of leaching the $ NO_{3} $− released 55.47–50.84%, $ NH_{4} $+ 55.47–50.84%, $ PO_{4} $3− 65.31–68.52%, and $ K_{2} $O 74.33–77.27%. Thus, leaching capacity was highest in $ NO_{3} $− followed by $ K_{2} $O > $ PO_{4} $3− > $ NH_{4} $+. Besides, among the four diverse biochar, the pine needle biochar (PNB) showed best nutrient retention/sorption capacity and lowest with maize stalk biochar (MSB). The SRF had lower nutrient release pattern than the fertilizer alone, demonstrating its slow-release behavior. After leaching with water equivalent to 462.18 mm rainfall (160 mL), approximately 47.60–58.27% $ NO_{3} $−, 47.84–65.40% $ NH_{4} $+, and 58.05–59.07% $ K_{2} $O was recovered in 40–50-cm column depth which indicated that SRF retained the nutrients in upper soil column and reduced its leaching potential. It also indicated that fertilizer was mobile as compared to the SRF. Biochar slowed the downward mobility of N and K in packed soil column. But, interestingly, phosphorus movement was enhanced by SRF in column and it increased its release potential in soil column. The crop yield (2.89–8.82%) and yield attribute characters were positively increased/enhanced by the biochar-based SRF than fertilization which was highest with BGB-SRF (black gram biochar-SRF) followed by MSB-SRF, LCB-SRF (Lantana camara biochar-SRF), and PNB-SRF. The nitrogen use efficiency followed as BGB-SRF (38.3%) > MSB-SRF (37.5%) > LCB-SRF (36.2%) > PNB-SRF (35.7%) than fertilizer (22.8%). The biochar-based SRF also improved the soil quality by increasing available nutrient (5.20–15.71%), oxidizable carbon (19.01–37.18%), and decreasing soil pH (11.74–3.73%). Soil quality improvement facilitated superior maize and black gram grain nutrient uptake (24.44–5.11%). Hence, the biochar-based SRF could be used as N-P-K-based slow-release fertilizer to maximize the functions of the N-P-K fertilizer when added to a sandy soil and minimize its environmental impact.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Slow-release fertilizer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nutrient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Yield</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nitrogen use efficiency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil health</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghosh, Goutam Kumar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biomass Conversion and Biorefinery</subfield><subfield code="d">Berlin : Springer, 2011</subfield><subfield code="g">13(2021), 14 vom: 06. Nov., Seite 13051-13063</subfield><subfield code="w">(DE-627)645092843</subfield><subfield code="w">(DE-600)2592298-1</subfield><subfield code="x">2190-6823</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:14</subfield><subfield code="g">day:06</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:13051-13063</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s13399-021-02069-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2021</subfield><subfield code="e">14</subfield><subfield code="b">06</subfield><subfield code="c">11</subfield><subfield code="h">13051-13063</subfield></datafield></record></collection>
|
score |
7.399441 |