Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers
Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-w...
Ausführliche Beschreibung
Autor*in: |
Lee, Grace [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Clinically significant prostate cancer (CSPCa) |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Abdominal radiology - [Boston, MA] : Springer US, 2016, 48(2023), 10 vom: 26. Juni, Seite 3216-3228 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2023 ; number:10 ; day:26 ; month:06 ; pages:3216-3228 |
Links: |
---|
DOI / URN: |
10.1007/s00261-023-03969-z |
---|
Katalog-ID: |
SPR052985407 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR052985407 | ||
003 | DE-627 | ||
005 | 20230906064707.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230906s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00261-023-03969-z |2 doi | |
035 | |a (DE-627)SPR052985407 | ||
035 | |a (SPR)s00261-023-03969-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Lee, Grace |e verfasserin |0 (orcid)0000-0001-9950-7976 |4 aut | |
245 | 1 | 0 | |a Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist’s mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss’ kappa inter-reader agreement was calculated and compared. Results Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). Conclusion Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement. Graphical Abstract | ||
650 | 4 | |a Clinically significant prostate cancer (CSPCa) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multiparametric MRI (mpMRI) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hybrid multidimensional-MRI (HM-MRI) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prostate imaging reporting and data system (PI-RADS) |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chatterjee, Aritrick |4 aut | |
700 | 1 | |a Harmath, Carla |4 aut | |
700 | 1 | |a Karademir, Ibrahim |4 aut | |
700 | 1 | |a Engelmann, Roger |4 aut | |
700 | 1 | |a Yousuf, Ambereen |4 aut | |
700 | 1 | |a Islam, Salman |4 aut | |
700 | 1 | |a Karczmar, Gregory |4 aut | |
700 | 1 | |a Oto, Aytekin |4 aut | |
700 | 1 | |a Giurcanu, Mihai |4 aut | |
700 | 1 | |a Antic, Tatjana |4 aut | |
700 | 1 | |a Eggener, Scott |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Abdominal radiology |d [Boston, MA] : Springer US, 2016 |g 48(2023), 10 vom: 26. Juni, Seite 3216-3228 |w (DE-627)847023133 |w (DE-600)2845742-0 |x 2366-0058 |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2023 |g number:10 |g day:26 |g month:06 |g pages:3216-3228 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00261-023-03969-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 48 |j 2023 |e 10 |b 26 |c 06 |h 3216-3228 |
author_variant |
g l gl a c ac c h ch i k ik r e re a y ay s i si g k gk a o ao m g mg t a ta s e se |
---|---|
matchkey_str |
article:23660058:2023----::mrvnraeacrcadpcfctwttediinfyrdutdmninlrtmliaaercridans |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s00261-023-03969-z doi (DE-627)SPR052985407 (SPR)s00261-023-03969-z-e DE-627 ger DE-627 rakwb eng Lee, Grace verfasserin (orcid)0000-0001-9950-7976 aut Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist’s mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss’ kappa inter-reader agreement was calculated and compared. Results Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). Conclusion Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement. Graphical Abstract Clinically significant prostate cancer (CSPCa) (dpeaa)DE-He213 Multiparametric MRI (mpMRI) (dpeaa)DE-He213 Hybrid multidimensional-MRI (HM-MRI) (dpeaa)DE-He213 Prostate imaging reporting and data system (PI-RADS) (dpeaa)DE-He213 Chatterjee, Aritrick aut Harmath, Carla aut Karademir, Ibrahim aut Engelmann, Roger aut Yousuf, Ambereen aut Islam, Salman aut Karczmar, Gregory aut Oto, Aytekin aut Giurcanu, Mihai aut Antic, Tatjana aut Eggener, Scott aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 48(2023), 10 vom: 26. Juni, Seite 3216-3228 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:48 year:2023 number:10 day:26 month:06 pages:3216-3228 https://dx.doi.org/10.1007/s00261-023-03969-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 48 2023 10 26 06 3216-3228 |
spelling |
10.1007/s00261-023-03969-z doi (DE-627)SPR052985407 (SPR)s00261-023-03969-z-e DE-627 ger DE-627 rakwb eng Lee, Grace verfasserin (orcid)0000-0001-9950-7976 aut Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist’s mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss’ kappa inter-reader agreement was calculated and compared. Results Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). Conclusion Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement. Graphical Abstract Clinically significant prostate cancer (CSPCa) (dpeaa)DE-He213 Multiparametric MRI (mpMRI) (dpeaa)DE-He213 Hybrid multidimensional-MRI (HM-MRI) (dpeaa)DE-He213 Prostate imaging reporting and data system (PI-RADS) (dpeaa)DE-He213 Chatterjee, Aritrick aut Harmath, Carla aut Karademir, Ibrahim aut Engelmann, Roger aut Yousuf, Ambereen aut Islam, Salman aut Karczmar, Gregory aut Oto, Aytekin aut Giurcanu, Mihai aut Antic, Tatjana aut Eggener, Scott aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 48(2023), 10 vom: 26. Juni, Seite 3216-3228 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:48 year:2023 number:10 day:26 month:06 pages:3216-3228 https://dx.doi.org/10.1007/s00261-023-03969-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 48 2023 10 26 06 3216-3228 |
allfields_unstemmed |
10.1007/s00261-023-03969-z doi (DE-627)SPR052985407 (SPR)s00261-023-03969-z-e DE-627 ger DE-627 rakwb eng Lee, Grace verfasserin (orcid)0000-0001-9950-7976 aut Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist’s mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss’ kappa inter-reader agreement was calculated and compared. Results Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). Conclusion Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement. Graphical Abstract Clinically significant prostate cancer (CSPCa) (dpeaa)DE-He213 Multiparametric MRI (mpMRI) (dpeaa)DE-He213 Hybrid multidimensional-MRI (HM-MRI) (dpeaa)DE-He213 Prostate imaging reporting and data system (PI-RADS) (dpeaa)DE-He213 Chatterjee, Aritrick aut Harmath, Carla aut Karademir, Ibrahim aut Engelmann, Roger aut Yousuf, Ambereen aut Islam, Salman aut Karczmar, Gregory aut Oto, Aytekin aut Giurcanu, Mihai aut Antic, Tatjana aut Eggener, Scott aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 48(2023), 10 vom: 26. Juni, Seite 3216-3228 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:48 year:2023 number:10 day:26 month:06 pages:3216-3228 https://dx.doi.org/10.1007/s00261-023-03969-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 48 2023 10 26 06 3216-3228 |
allfieldsGer |
10.1007/s00261-023-03969-z doi (DE-627)SPR052985407 (SPR)s00261-023-03969-z-e DE-627 ger DE-627 rakwb eng Lee, Grace verfasserin (orcid)0000-0001-9950-7976 aut Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist’s mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss’ kappa inter-reader agreement was calculated and compared. Results Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). Conclusion Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement. Graphical Abstract Clinically significant prostate cancer (CSPCa) (dpeaa)DE-He213 Multiparametric MRI (mpMRI) (dpeaa)DE-He213 Hybrid multidimensional-MRI (HM-MRI) (dpeaa)DE-He213 Prostate imaging reporting and data system (PI-RADS) (dpeaa)DE-He213 Chatterjee, Aritrick aut Harmath, Carla aut Karademir, Ibrahim aut Engelmann, Roger aut Yousuf, Ambereen aut Islam, Salman aut Karczmar, Gregory aut Oto, Aytekin aut Giurcanu, Mihai aut Antic, Tatjana aut Eggener, Scott aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 48(2023), 10 vom: 26. Juni, Seite 3216-3228 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:48 year:2023 number:10 day:26 month:06 pages:3216-3228 https://dx.doi.org/10.1007/s00261-023-03969-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 48 2023 10 26 06 3216-3228 |
allfieldsSound |
10.1007/s00261-023-03969-z doi (DE-627)SPR052985407 (SPR)s00261-023-03969-z-e DE-627 ger DE-627 rakwb eng Lee, Grace verfasserin (orcid)0000-0001-9950-7976 aut Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist’s mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss’ kappa inter-reader agreement was calculated and compared. Results Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). Conclusion Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement. Graphical Abstract Clinically significant prostate cancer (CSPCa) (dpeaa)DE-He213 Multiparametric MRI (mpMRI) (dpeaa)DE-He213 Hybrid multidimensional-MRI (HM-MRI) (dpeaa)DE-He213 Prostate imaging reporting and data system (PI-RADS) (dpeaa)DE-He213 Chatterjee, Aritrick aut Harmath, Carla aut Karademir, Ibrahim aut Engelmann, Roger aut Yousuf, Ambereen aut Islam, Salman aut Karczmar, Gregory aut Oto, Aytekin aut Giurcanu, Mihai aut Antic, Tatjana aut Eggener, Scott aut Enthalten in Abdominal radiology [Boston, MA] : Springer US, 2016 48(2023), 10 vom: 26. Juni, Seite 3216-3228 (DE-627)847023133 (DE-600)2845742-0 2366-0058 nnns volume:48 year:2023 number:10 day:26 month:06 pages:3216-3228 https://dx.doi.org/10.1007/s00261-023-03969-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 48 2023 10 26 06 3216-3228 |
language |
English |
source |
Enthalten in Abdominal radiology 48(2023), 10 vom: 26. Juni, Seite 3216-3228 volume:48 year:2023 number:10 day:26 month:06 pages:3216-3228 |
sourceStr |
Enthalten in Abdominal radiology 48(2023), 10 vom: 26. Juni, Seite 3216-3228 volume:48 year:2023 number:10 day:26 month:06 pages:3216-3228 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Clinically significant prostate cancer (CSPCa) Multiparametric MRI (mpMRI) Hybrid multidimensional-MRI (HM-MRI) Prostate imaging reporting and data system (PI-RADS) |
isfreeaccess_bool |
false |
container_title |
Abdominal radiology |
authorswithroles_txt_mv |
Lee, Grace @@aut@@ Chatterjee, Aritrick @@aut@@ Harmath, Carla @@aut@@ Karademir, Ibrahim @@aut@@ Engelmann, Roger @@aut@@ Yousuf, Ambereen @@aut@@ Islam, Salman @@aut@@ Karczmar, Gregory @@aut@@ Oto, Aytekin @@aut@@ Giurcanu, Mihai @@aut@@ Antic, Tatjana @@aut@@ Eggener, Scott @@aut@@ |
publishDateDaySort_date |
2023-06-26T00:00:00Z |
hierarchy_top_id |
847023133 |
id |
SPR052985407 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052985407</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230906064707.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230906s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00261-023-03969-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052985407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00261-023-03969-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Grace</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9950-7976</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist’s mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss’ kappa inter-reader agreement was calculated and compared. Results Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). Conclusion Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinically significant prostate cancer (CSPCa)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiparametric MRI (mpMRI)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid multidimensional-MRI (HM-MRI)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate imaging reporting and data system (PI-RADS)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chatterjee, Aritrick</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harmath, Carla</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karademir, Ibrahim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engelmann, Roger</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yousuf, Ambereen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Islam, Salman</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karczmar, Gregory</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oto, Aytekin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giurcanu, Mihai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antic, Tatjana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eggener, Scott</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Abdominal radiology</subfield><subfield code="d">[Boston, MA] : Springer US, 2016</subfield><subfield code="g">48(2023), 10 vom: 26. Juni, Seite 3216-3228</subfield><subfield code="w">(DE-627)847023133</subfield><subfield code="w">(DE-600)2845742-0</subfield><subfield code="x">2366-0058</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:10</subfield><subfield code="g">day:26</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:3216-3228</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00261-023-03969-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2023</subfield><subfield code="e">10</subfield><subfield code="b">26</subfield><subfield code="c">06</subfield><subfield code="h">3216-3228</subfield></datafield></record></collection>
|
author |
Lee, Grace |
spellingShingle |
Lee, Grace misc Clinically significant prostate cancer (CSPCa) misc Multiparametric MRI (mpMRI) misc Hybrid multidimensional-MRI (HM-MRI) misc Prostate imaging reporting and data system (PI-RADS) Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers |
authorStr |
Lee, Grace |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)847023133 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
2366-0058 |
topic_title |
Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers Clinically significant prostate cancer (CSPCa) (dpeaa)DE-He213 Multiparametric MRI (mpMRI) (dpeaa)DE-He213 Hybrid multidimensional-MRI (HM-MRI) (dpeaa)DE-He213 Prostate imaging reporting and data system (PI-RADS) (dpeaa)DE-He213 |
topic |
misc Clinically significant prostate cancer (CSPCa) misc Multiparametric MRI (mpMRI) misc Hybrid multidimensional-MRI (HM-MRI) misc Prostate imaging reporting and data system (PI-RADS) |
topic_unstemmed |
misc Clinically significant prostate cancer (CSPCa) misc Multiparametric MRI (mpMRI) misc Hybrid multidimensional-MRI (HM-MRI) misc Prostate imaging reporting and data system (PI-RADS) |
topic_browse |
misc Clinically significant prostate cancer (CSPCa) misc Multiparametric MRI (mpMRI) misc Hybrid multidimensional-MRI (HM-MRI) misc Prostate imaging reporting and data system (PI-RADS) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Abdominal radiology |
hierarchy_parent_id |
847023133 |
hierarchy_top_title |
Abdominal radiology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)847023133 (DE-600)2845742-0 |
title |
Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers |
ctrlnum |
(DE-627)SPR052985407 (SPR)s00261-023-03969-z-e |
title_full |
Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers |
author_sort |
Lee, Grace |
journal |
Abdominal radiology |
journalStr |
Abdominal radiology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
3216 |
author_browse |
Lee, Grace Chatterjee, Aritrick Harmath, Carla Karademir, Ibrahim Engelmann, Roger Yousuf, Ambereen Islam, Salman Karczmar, Gregory Oto, Aytekin Giurcanu, Mihai Antic, Tatjana Eggener, Scott |
container_volume |
48 |
format_se |
Elektronische Aufsätze |
author-letter |
Lee, Grace |
doi_str_mv |
10.1007/s00261-023-03969-z |
normlink |
(ORCID)0000-0001-9950-7976 |
normlink_prefix_str_mv |
(orcid)0000-0001-9950-7976 |
title_sort |
improving reader accuracy and specificity with the addition of hybrid multidimensional-mri to multiparametric-mri in diagnosing clinically significant prostate cancers |
title_auth |
Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers |
abstract |
Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist’s mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss’ kappa inter-reader agreement was calculated and compared. Results Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). Conclusion Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement. Graphical Abstract © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist’s mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss’ kappa inter-reader agreement was calculated and compared. Results Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). Conclusion Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement. Graphical Abstract © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist’s mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss’ kappa inter-reader agreement was calculated and compared. Results Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). Conclusion Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement. Graphical Abstract © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
10 |
title_short |
Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers |
url |
https://dx.doi.org/10.1007/s00261-023-03969-z |
remote_bool |
true |
author2 |
Chatterjee, Aritrick Harmath, Carla Karademir, Ibrahim Engelmann, Roger Yousuf, Ambereen Islam, Salman Karczmar, Gregory Oto, Aytekin Giurcanu, Mihai Antic, Tatjana Eggener, Scott |
author2Str |
Chatterjee, Aritrick Harmath, Carla Karademir, Ibrahim Engelmann, Roger Yousuf, Ambereen Islam, Salman Karczmar, Gregory Oto, Aytekin Giurcanu, Mihai Antic, Tatjana Eggener, Scott |
ppnlink |
847023133 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00261-023-03969-z |
up_date |
2024-07-03T16:13:29.299Z |
_version_ |
1803575056718102528 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR052985407</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230906064707.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230906s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00261-023-03969-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052985407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00261-023-03969-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, Grace</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9950-7976</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving reader accuracy and specificity with the addition of hybrid multidimensional-MRI to multiparametric-MRI in diagnosing clinically significant prostate cancers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Purpose Compare reader performance when adding the Hybrid Multidimensional-MRI (HM-MRI) map to multiparametric MRI (mpMRI+HM-MRI) versus mpMRI alone and inter-reader agreement in diagnosing clinically significant prostate cancers (CSPCa). Methods All 61 patients who underwent mpMRI (T2-, diffusion-weighted (DWI), and contrast-enhanced scans) and HM-MRI (with multiple TE/b-value combinations) before prostatectomy or MRI-fused-transrectal ultrasound-guided biopsy between August, 2012 and February, 2020, were retrospectively analyzed. Two experienced readers (R1, R2) and two less-experienced readers (less than 6-year MRI prostate experience) (R3, R4) interpreted mpMRI without/with HM-MRI in the same sitting. Readers recorded the PI-RADS 3-5 score, lesion location, and change in score after adding HM-MRI. Each radiologist’s mpMRI+HM-MRI and mpMRI performance measures (AUC, sensitivity, specificity, PPV, NPV, and accuracy) based on pathology, and Fleiss’ kappa inter-reader agreement was calculated and compared. Results Per-sextant R3 and R4 mpMRI+HM-MRI accuracy (82% 81% vs. 77%, 71%; p=.006, <.001) and specificity (89%, 88% vs. 84%, 75%; p=.009, <.001) were higher than with mpMRI. Per-patient R4 mpMRI+HM-MRI specificity improved (48% from 7%; p<.001). R1 and R2 mpMRI+HM-MRI specificity per-sextant (80%, 93% vs. 81%, 93%; p=.51,>.99) and per-patient (37%, 41% vs. 48%, 37%; p=.16, .57) remained similar to mpMRI. R1 and R2 per-patient AUC with mpMRI+HM-MRI (0.63, 0.64 vs. 0.67, 0.61; p=.33, .36) remained similar to mpMRI, but R3 and R4 mpMRI+HM-MRI AUC (0.73, 0.62) approached R1 and R2 AUC. Per-patient inter-reader agreement, mpMRI+HM-MRI Fleiss Kappa, was higher than mpMRI (0.36 [95% CI 0.26, 0.46] vs. 0.17 [95% CI 0.07, 0.27]); p=.009). Conclusion Adding HM-MRI to mpMRI (mpMRI+HM-MRI) improved specificity and accuracy for less-experienced readers, improving overall inter-reader agreement. Graphical Abstract</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinically significant prostate cancer (CSPCa)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiparametric MRI (mpMRI)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid multidimensional-MRI (HM-MRI)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate imaging reporting and data system (PI-RADS)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chatterjee, Aritrick</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harmath, Carla</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karademir, Ibrahim</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engelmann, Roger</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yousuf, Ambereen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Islam, Salman</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Karczmar, Gregory</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oto, Aytekin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giurcanu, Mihai</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antic, Tatjana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eggener, Scott</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Abdominal radiology</subfield><subfield code="d">[Boston, MA] : Springer US, 2016</subfield><subfield code="g">48(2023), 10 vom: 26. Juni, Seite 3216-3228</subfield><subfield code="w">(DE-627)847023133</subfield><subfield code="w">(DE-600)2845742-0</subfield><subfield code="x">2366-0058</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:10</subfield><subfield code="g">day:26</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:3216-3228</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00261-023-03969-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2023</subfield><subfield code="e">10</subfield><subfield code="b">26</subfield><subfield code="c">06</subfield><subfield code="h">3216-3228</subfield></datafield></record></collection>
|
score |
7.401087 |