Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning
Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained tr...
Ausführliche Beschreibung
Autor*in: |
Chen, Zhiyong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2023 |
---|
Übergeordnetes Werk: |
Enthalten in: EURASIP Journal on audio, speech, and music processing - Heidelberg : Springer, 2006, 2023(2023), 1 vom: 05. Sept. |
---|---|
Übergeordnetes Werk: |
volume:2023 ; year:2023 ; number:1 ; day:05 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/s13636-023-00299-2 |
---|
Katalog-ID: |
SPR052995534 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR052995534 | ||
003 | DE-627 | ||
005 | 20231119064907.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230906s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s13636-023-00299-2 |2 doi | |
035 | |a (DE-627)SPR052995534 | ||
035 | |a (SPR)s13636-023-00299-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Chen, Zhiyong |e verfasserin |0 (orcid)0000-0002-9629-6111 |4 aut | |
245 | 1 | 0 | |a Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2023 | ||
520 | |a Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained traction in privacy-sensitive tasks, such as personal voice assistants in home environments. However, its application in heterogeneous multi-domain scenarios for enhancing system customization remains underexplored. In this paper, we propose the utilization of federated learning in heterogeneous situations to enable adaptation across multiple domains. We also introduce a personalized federated learning algorithm designed to effectively leverage limited domain data, resulting in improved learning outcomes. Furthermore, we present a strategy for implementing the federated learning algorithm in practical, real-world continual learning scenarios, demonstrating promising results. The proposed federated learning method exhibits superior performance across a range of synthesized complex conditions and continual learning settings, compared to conventional training methods. | ||
650 | 4 | |a Speaker recognition |7 (dpeaa)DE-He213 | |
650 | 4 | |a Federated learning |7 (dpeaa)DE-He213 | |
650 | 4 | |a Domain adaptation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Continual learning |7 (dpeaa)DE-He213 | |
700 | 1 | |a Xu, Shugong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t EURASIP Journal on audio, speech, and music processing |d Heidelberg : Springer, 2006 |g 2023(2023), 1 vom: 05. Sept. |w (DE-627)518348229 |w (DE-600)2252877-5 |x 1687-4722 |7 nnns |
773 | 1 | 8 | |g volume:2023 |g year:2023 |g number:1 |g day:05 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s13636-023-00299-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 2023 |j 2023 |e 1 |b 05 |c 09 |
author_variant |
z c zc s x sx |
---|---|
matchkey_str |
article:16874722:2023----::erigoaneeoeeusekreontossesihesnlzd |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1186/s13636-023-00299-2 doi (DE-627)SPR052995534 (SPR)s13636-023-00299-2-e DE-627 ger DE-627 rakwb eng Chen, Zhiyong verfasserin (orcid)0000-0002-9629-6111 aut Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained traction in privacy-sensitive tasks, such as personal voice assistants in home environments. However, its application in heterogeneous multi-domain scenarios for enhancing system customization remains underexplored. In this paper, we propose the utilization of federated learning in heterogeneous situations to enable adaptation across multiple domains. We also introduce a personalized federated learning algorithm designed to effectively leverage limited domain data, resulting in improved learning outcomes. Furthermore, we present a strategy for implementing the federated learning algorithm in practical, real-world continual learning scenarios, demonstrating promising results. The proposed federated learning method exhibits superior performance across a range of synthesized complex conditions and continual learning settings, compared to conventional training methods. Speaker recognition (dpeaa)DE-He213 Federated learning (dpeaa)DE-He213 Domain adaptation (dpeaa)DE-He213 Continual learning (dpeaa)DE-He213 Xu, Shugong aut Enthalten in EURASIP Journal on audio, speech, and music processing Heidelberg : Springer, 2006 2023(2023), 1 vom: 05. Sept. (DE-627)518348229 (DE-600)2252877-5 1687-4722 nnns volume:2023 year:2023 number:1 day:05 month:09 https://dx.doi.org/10.1186/s13636-023-00299-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2023 2023 1 05 09 |
spelling |
10.1186/s13636-023-00299-2 doi (DE-627)SPR052995534 (SPR)s13636-023-00299-2-e DE-627 ger DE-627 rakwb eng Chen, Zhiyong verfasserin (orcid)0000-0002-9629-6111 aut Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained traction in privacy-sensitive tasks, such as personal voice assistants in home environments. However, its application in heterogeneous multi-domain scenarios for enhancing system customization remains underexplored. In this paper, we propose the utilization of federated learning in heterogeneous situations to enable adaptation across multiple domains. We also introduce a personalized federated learning algorithm designed to effectively leverage limited domain data, resulting in improved learning outcomes. Furthermore, we present a strategy for implementing the federated learning algorithm in practical, real-world continual learning scenarios, demonstrating promising results. The proposed federated learning method exhibits superior performance across a range of synthesized complex conditions and continual learning settings, compared to conventional training methods. Speaker recognition (dpeaa)DE-He213 Federated learning (dpeaa)DE-He213 Domain adaptation (dpeaa)DE-He213 Continual learning (dpeaa)DE-He213 Xu, Shugong aut Enthalten in EURASIP Journal on audio, speech, and music processing Heidelberg : Springer, 2006 2023(2023), 1 vom: 05. Sept. (DE-627)518348229 (DE-600)2252877-5 1687-4722 nnns volume:2023 year:2023 number:1 day:05 month:09 https://dx.doi.org/10.1186/s13636-023-00299-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2023 2023 1 05 09 |
allfields_unstemmed |
10.1186/s13636-023-00299-2 doi (DE-627)SPR052995534 (SPR)s13636-023-00299-2-e DE-627 ger DE-627 rakwb eng Chen, Zhiyong verfasserin (orcid)0000-0002-9629-6111 aut Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained traction in privacy-sensitive tasks, such as personal voice assistants in home environments. However, its application in heterogeneous multi-domain scenarios for enhancing system customization remains underexplored. In this paper, we propose the utilization of federated learning in heterogeneous situations to enable adaptation across multiple domains. We also introduce a personalized federated learning algorithm designed to effectively leverage limited domain data, resulting in improved learning outcomes. Furthermore, we present a strategy for implementing the federated learning algorithm in practical, real-world continual learning scenarios, demonstrating promising results. The proposed federated learning method exhibits superior performance across a range of synthesized complex conditions and continual learning settings, compared to conventional training methods. Speaker recognition (dpeaa)DE-He213 Federated learning (dpeaa)DE-He213 Domain adaptation (dpeaa)DE-He213 Continual learning (dpeaa)DE-He213 Xu, Shugong aut Enthalten in EURASIP Journal on audio, speech, and music processing Heidelberg : Springer, 2006 2023(2023), 1 vom: 05. Sept. (DE-627)518348229 (DE-600)2252877-5 1687-4722 nnns volume:2023 year:2023 number:1 day:05 month:09 https://dx.doi.org/10.1186/s13636-023-00299-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2023 2023 1 05 09 |
allfieldsGer |
10.1186/s13636-023-00299-2 doi (DE-627)SPR052995534 (SPR)s13636-023-00299-2-e DE-627 ger DE-627 rakwb eng Chen, Zhiyong verfasserin (orcid)0000-0002-9629-6111 aut Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained traction in privacy-sensitive tasks, such as personal voice assistants in home environments. However, its application in heterogeneous multi-domain scenarios for enhancing system customization remains underexplored. In this paper, we propose the utilization of federated learning in heterogeneous situations to enable adaptation across multiple domains. We also introduce a personalized federated learning algorithm designed to effectively leverage limited domain data, resulting in improved learning outcomes. Furthermore, we present a strategy for implementing the federated learning algorithm in practical, real-world continual learning scenarios, demonstrating promising results. The proposed federated learning method exhibits superior performance across a range of synthesized complex conditions and continual learning settings, compared to conventional training methods. Speaker recognition (dpeaa)DE-He213 Federated learning (dpeaa)DE-He213 Domain adaptation (dpeaa)DE-He213 Continual learning (dpeaa)DE-He213 Xu, Shugong aut Enthalten in EURASIP Journal on audio, speech, and music processing Heidelberg : Springer, 2006 2023(2023), 1 vom: 05. Sept. (DE-627)518348229 (DE-600)2252877-5 1687-4722 nnns volume:2023 year:2023 number:1 day:05 month:09 https://dx.doi.org/10.1186/s13636-023-00299-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2023 2023 1 05 09 |
allfieldsSound |
10.1186/s13636-023-00299-2 doi (DE-627)SPR052995534 (SPR)s13636-023-00299-2-e DE-627 ger DE-627 rakwb eng Chen, Zhiyong verfasserin (orcid)0000-0002-9629-6111 aut Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2023 Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained traction in privacy-sensitive tasks, such as personal voice assistants in home environments. However, its application in heterogeneous multi-domain scenarios for enhancing system customization remains underexplored. In this paper, we propose the utilization of federated learning in heterogeneous situations to enable adaptation across multiple domains. We also introduce a personalized federated learning algorithm designed to effectively leverage limited domain data, resulting in improved learning outcomes. Furthermore, we present a strategy for implementing the federated learning algorithm in practical, real-world continual learning scenarios, demonstrating promising results. The proposed federated learning method exhibits superior performance across a range of synthesized complex conditions and continual learning settings, compared to conventional training methods. Speaker recognition (dpeaa)DE-He213 Federated learning (dpeaa)DE-He213 Domain adaptation (dpeaa)DE-He213 Continual learning (dpeaa)DE-He213 Xu, Shugong aut Enthalten in EURASIP Journal on audio, speech, and music processing Heidelberg : Springer, 2006 2023(2023), 1 vom: 05. Sept. (DE-627)518348229 (DE-600)2252877-5 1687-4722 nnns volume:2023 year:2023 number:1 day:05 month:09 https://dx.doi.org/10.1186/s13636-023-00299-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 2023 2023 1 05 09 |
language |
English |
source |
Enthalten in EURASIP Journal on audio, speech, and music processing 2023(2023), 1 vom: 05. Sept. volume:2023 year:2023 number:1 day:05 month:09 |
sourceStr |
Enthalten in EURASIP Journal on audio, speech, and music processing 2023(2023), 1 vom: 05. Sept. volume:2023 year:2023 number:1 day:05 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Speaker recognition Federated learning Domain adaptation Continual learning |
isfreeaccess_bool |
true |
container_title |
EURASIP Journal on audio, speech, and music processing |
authorswithroles_txt_mv |
Chen, Zhiyong @@aut@@ Xu, Shugong @@aut@@ |
publishDateDaySort_date |
2023-09-05T00:00:00Z |
hierarchy_top_id |
518348229 |
id |
SPR052995534 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052995534</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231119064907.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230906s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13636-023-00299-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052995534</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13636-023-00299-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Zhiyong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9629-6111</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained traction in privacy-sensitive tasks, such as personal voice assistants in home environments. However, its application in heterogeneous multi-domain scenarios for enhancing system customization remains underexplored. In this paper, we propose the utilization of federated learning in heterogeneous situations to enable adaptation across multiple domains. We also introduce a personalized federated learning algorithm designed to effectively leverage limited domain data, resulting in improved learning outcomes. Furthermore, we present a strategy for implementing the federated learning algorithm in practical, real-world continual learning scenarios, demonstrating promising results. The proposed federated learning method exhibits superior performance across a range of synthesized complex conditions and continual learning settings, compared to conventional training methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Speaker recognition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Federated learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Domain adaptation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continual learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Shugong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EURASIP Journal on audio, speech, and music processing</subfield><subfield code="d">Heidelberg : Springer, 2006</subfield><subfield code="g">2023(2023), 1 vom: 05. Sept.</subfield><subfield code="w">(DE-627)518348229</subfield><subfield code="w">(DE-600)2252877-5</subfield><subfield code="x">1687-4722</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2023</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13636-023-00299-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2023</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Chen, Zhiyong |
spellingShingle |
Chen, Zhiyong misc Speaker recognition misc Federated learning misc Domain adaptation misc Continual learning Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning |
authorStr |
Chen, Zhiyong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)518348229 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1687-4722 |
topic_title |
Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning Speaker recognition (dpeaa)DE-He213 Federated learning (dpeaa)DE-He213 Domain adaptation (dpeaa)DE-He213 Continual learning (dpeaa)DE-He213 |
topic |
misc Speaker recognition misc Federated learning misc Domain adaptation misc Continual learning |
topic_unstemmed |
misc Speaker recognition misc Federated learning misc Domain adaptation misc Continual learning |
topic_browse |
misc Speaker recognition misc Federated learning misc Domain adaptation misc Continual learning |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
EURASIP Journal on audio, speech, and music processing |
hierarchy_parent_id |
518348229 |
hierarchy_top_title |
EURASIP Journal on audio, speech, and music processing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)518348229 (DE-600)2252877-5 |
title |
Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning |
ctrlnum |
(DE-627)SPR052995534 (SPR)s13636-023-00299-2-e |
title_full |
Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning |
author_sort |
Chen, Zhiyong |
journal |
EURASIP Journal on audio, speech, and music processing |
journalStr |
EURASIP Journal on audio, speech, and music processing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
author_browse |
Chen, Zhiyong Xu, Shugong |
container_volume |
2023 |
format_se |
Elektronische Aufsätze |
author-letter |
Chen, Zhiyong |
doi_str_mv |
10.1186/s13636-023-00299-2 |
normlink |
(ORCID)0000-0002-9629-6111 |
normlink_prefix_str_mv |
(orcid)0000-0002-9629-6111 |
title_sort |
learning domain-heterogeneous speaker recognition systems with personalized continual federated learning |
title_auth |
Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning |
abstract |
Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained traction in privacy-sensitive tasks, such as personal voice assistants in home environments. However, its application in heterogeneous multi-domain scenarios for enhancing system customization remains underexplored. In this paper, we propose the utilization of federated learning in heterogeneous situations to enable adaptation across multiple domains. We also introduce a personalized federated learning algorithm designed to effectively leverage limited domain data, resulting in improved learning outcomes. Furthermore, we present a strategy for implementing the federated learning algorithm in practical, real-world continual learning scenarios, demonstrating promising results. The proposed federated learning method exhibits superior performance across a range of synthesized complex conditions and continual learning settings, compared to conventional training methods. © The Author(s) 2023 |
abstractGer |
Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained traction in privacy-sensitive tasks, such as personal voice assistants in home environments. However, its application in heterogeneous multi-domain scenarios for enhancing system customization remains underexplored. In this paper, we propose the utilization of federated learning in heterogeneous situations to enable adaptation across multiple domains. We also introduce a personalized federated learning algorithm designed to effectively leverage limited domain data, resulting in improved learning outcomes. Furthermore, we present a strategy for implementing the federated learning algorithm in practical, real-world continual learning scenarios, demonstrating promising results. The proposed federated learning method exhibits superior performance across a range of synthesized complex conditions and continual learning settings, compared to conventional training methods. © The Author(s) 2023 |
abstract_unstemmed |
Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained traction in privacy-sensitive tasks, such as personal voice assistants in home environments. However, its application in heterogeneous multi-domain scenarios for enhancing system customization remains underexplored. In this paper, we propose the utilization of federated learning in heterogeneous situations to enable adaptation across multiple domains. We also introduce a personalized federated learning algorithm designed to effectively leverage limited domain data, resulting in improved learning outcomes. Furthermore, we present a strategy for implementing the federated learning algorithm in practical, real-world continual learning scenarios, demonstrating promising results. The proposed federated learning method exhibits superior performance across a range of synthesized complex conditions and continual learning settings, compared to conventional training methods. © The Author(s) 2023 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_2055 GBV_ILN_2108 GBV_ILN_2119 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning |
url |
https://dx.doi.org/10.1186/s13636-023-00299-2 |
remote_bool |
true |
author2 |
Xu, Shugong |
author2Str |
Xu, Shugong |
ppnlink |
518348229 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s13636-023-00299-2 |
up_date |
2024-07-03T16:18:15.126Z |
_version_ |
1803575356424192000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR052995534</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231119064907.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230906s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s13636-023-00299-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR052995534</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s13636-023-00299-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Zhiyong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9629-6111</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning domain-heterogeneous speaker recognition systems with personalized continual federated learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2023</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Speaker recognition, the process of automatically identifying a speaker based on individual characteristics in speech signals, presents significant challenges when addressing heterogeneous-domain conditions. Federated learning, a recent development in machine learning methods, has gained traction in privacy-sensitive tasks, such as personal voice assistants in home environments. However, its application in heterogeneous multi-domain scenarios for enhancing system customization remains underexplored. In this paper, we propose the utilization of federated learning in heterogeneous situations to enable adaptation across multiple domains. We also introduce a personalized federated learning algorithm designed to effectively leverage limited domain data, resulting in improved learning outcomes. Furthermore, we present a strategy for implementing the federated learning algorithm in practical, real-world continual learning scenarios, demonstrating promising results. The proposed federated learning method exhibits superior performance across a range of synthesized complex conditions and continual learning settings, compared to conventional training methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Speaker recognition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Federated learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Domain adaptation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continual learning</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Shugong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">EURASIP Journal on audio, speech, and music processing</subfield><subfield code="d">Heidelberg : Springer, 2006</subfield><subfield code="g">2023(2023), 1 vom: 05. Sept.</subfield><subfield code="w">(DE-627)518348229</subfield><subfield code="w">(DE-600)2252877-5</subfield><subfield code="x">1687-4722</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:2023</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:1</subfield><subfield code="g">day:05</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s13636-023-00299-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">2023</subfield><subfield code="j">2023</subfield><subfield code="e">1</subfield><subfield code="b">05</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.400923 |