Data based loss estimation of the mean of a spherical distribution with a residual vector
Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form...
Ausführliche Beschreibung
Autor*in: |
Canu, Stéphane [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Metrika - Berlin : Springer, 1958, 86(2023), 8 vom: 06. Feb., Seite 851-878 |
---|---|
Übergeordnetes Werk: |
volume:86 ; year:2023 ; number:8 ; day:06 ; month:02 ; pages:851-878 |
Links: |
---|
DOI / URN: |
10.1007/s00184-023-00895-4 |
---|
Katalog-ID: |
SPR053094832 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | SPR053094832 | ||
003 | DE-627 | ||
005 | 20230917064619.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230917s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00184-023-00895-4 |2 doi | |
035 | |a (DE-627)SPR053094832 | ||
035 | |a (SPR)s00184-023-00895-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Canu, Stéphane |e verfasserin |0 (orcid)0000-0002-7602-4557 |4 aut | |
245 | 1 | 0 | |a Data based loss estimation of the mean of a spherical distribution with a residual vector |
264 | 1 | |c 2023 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form %$1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) %$ where %$\varvec{\theta }%$ and %$\sigma %$ are both unknown, we consider general estimators %$ \varphi (X,\Vert U\Vert ^2) %$ of %$\varvec{\theta }%$ under two losses: the usual quadratic loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2%$ and the data-based loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2%$. Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator %$\delta _0(X,\Vert U\Vert ^2)%$ with a general alternative loss estimator %$\delta (X,\Vert U\Vert ^2)%$. Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between %$\delta (X,\Vert U\Vert ^2)%$ and %$\delta _0(X,\Vert U\Vert ^2)%$, which gives rise to a sufficient domination condition of %$\delta (X,\Vert U\Vert ^2)%$ over %$\delta _0(X,\Vert U\Vert ^2)%$. Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used. | ||
650 | 4 | |a Data based loss |7 (dpeaa)DE-He213 | |
650 | 4 | |a Loss estimation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Spherically symmetric distributions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stein type identity |7 (dpeaa)DE-He213 | |
700 | 1 | |a Fourdrinier, Dominique |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Metrika |d Berlin : Springer, 1958 |g 86(2023), 8 vom: 06. Feb., Seite 851-878 |w (DE-627)254630952 |w (DE-600)1462149-6 |x 1435-926X |7 nnns |
773 | 1 | 8 | |g volume:86 |g year:2023 |g number:8 |g day:06 |g month:02 |g pages:851-878 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00184-023-00895-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 86 |j 2023 |e 8 |b 06 |c 02 |h 851-878 |
author_variant |
s c sc d f df |
---|---|
matchkey_str |
article:1435926X:2023----::aaaelsetmtooteenfshrclitiui |
hierarchy_sort_str |
2023 |
publishDate |
2023 |
allfields |
10.1007/s00184-023-00895-4 doi (DE-627)SPR053094832 (SPR)s00184-023-00895-4-e DE-627 ger DE-627 rakwb eng Canu, Stéphane verfasserin (orcid)0000-0002-7602-4557 aut Data based loss estimation of the mean of a spherical distribution with a residual vector 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form %$1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) %$ where %$\varvec{\theta }%$ and %$\sigma %$ are both unknown, we consider general estimators %$ \varphi (X,\Vert U\Vert ^2) %$ of %$\varvec{\theta }%$ under two losses: the usual quadratic loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2%$ and the data-based loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2%$. Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator %$\delta _0(X,\Vert U\Vert ^2)%$ with a general alternative loss estimator %$\delta (X,\Vert U\Vert ^2)%$. Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between %$\delta (X,\Vert U\Vert ^2)%$ and %$\delta _0(X,\Vert U\Vert ^2)%$, which gives rise to a sufficient domination condition of %$\delta (X,\Vert U\Vert ^2)%$ over %$\delta _0(X,\Vert U\Vert ^2)%$. Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used. Data based loss (dpeaa)DE-He213 Loss estimation (dpeaa)DE-He213 Spherically symmetric distributions (dpeaa)DE-He213 Stein type identity (dpeaa)DE-He213 Fourdrinier, Dominique aut Enthalten in Metrika Berlin : Springer, 1958 86(2023), 8 vom: 06. Feb., Seite 851-878 (DE-627)254630952 (DE-600)1462149-6 1435-926X nnns volume:86 year:2023 number:8 day:06 month:02 pages:851-878 https://dx.doi.org/10.1007/s00184-023-00895-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 86 2023 8 06 02 851-878 |
spelling |
10.1007/s00184-023-00895-4 doi (DE-627)SPR053094832 (SPR)s00184-023-00895-4-e DE-627 ger DE-627 rakwb eng Canu, Stéphane verfasserin (orcid)0000-0002-7602-4557 aut Data based loss estimation of the mean of a spherical distribution with a residual vector 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form %$1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) %$ where %$\varvec{\theta }%$ and %$\sigma %$ are both unknown, we consider general estimators %$ \varphi (X,\Vert U\Vert ^2) %$ of %$\varvec{\theta }%$ under two losses: the usual quadratic loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2%$ and the data-based loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2%$. Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator %$\delta _0(X,\Vert U\Vert ^2)%$ with a general alternative loss estimator %$\delta (X,\Vert U\Vert ^2)%$. Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between %$\delta (X,\Vert U\Vert ^2)%$ and %$\delta _0(X,\Vert U\Vert ^2)%$, which gives rise to a sufficient domination condition of %$\delta (X,\Vert U\Vert ^2)%$ over %$\delta _0(X,\Vert U\Vert ^2)%$. Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used. Data based loss (dpeaa)DE-He213 Loss estimation (dpeaa)DE-He213 Spherically symmetric distributions (dpeaa)DE-He213 Stein type identity (dpeaa)DE-He213 Fourdrinier, Dominique aut Enthalten in Metrika Berlin : Springer, 1958 86(2023), 8 vom: 06. Feb., Seite 851-878 (DE-627)254630952 (DE-600)1462149-6 1435-926X nnns volume:86 year:2023 number:8 day:06 month:02 pages:851-878 https://dx.doi.org/10.1007/s00184-023-00895-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 86 2023 8 06 02 851-878 |
allfields_unstemmed |
10.1007/s00184-023-00895-4 doi (DE-627)SPR053094832 (SPR)s00184-023-00895-4-e DE-627 ger DE-627 rakwb eng Canu, Stéphane verfasserin (orcid)0000-0002-7602-4557 aut Data based loss estimation of the mean of a spherical distribution with a residual vector 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form %$1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) %$ where %$\varvec{\theta }%$ and %$\sigma %$ are both unknown, we consider general estimators %$ \varphi (X,\Vert U\Vert ^2) %$ of %$\varvec{\theta }%$ under two losses: the usual quadratic loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2%$ and the data-based loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2%$. Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator %$\delta _0(X,\Vert U\Vert ^2)%$ with a general alternative loss estimator %$\delta (X,\Vert U\Vert ^2)%$. Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between %$\delta (X,\Vert U\Vert ^2)%$ and %$\delta _0(X,\Vert U\Vert ^2)%$, which gives rise to a sufficient domination condition of %$\delta (X,\Vert U\Vert ^2)%$ over %$\delta _0(X,\Vert U\Vert ^2)%$. Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used. Data based loss (dpeaa)DE-He213 Loss estimation (dpeaa)DE-He213 Spherically symmetric distributions (dpeaa)DE-He213 Stein type identity (dpeaa)DE-He213 Fourdrinier, Dominique aut Enthalten in Metrika Berlin : Springer, 1958 86(2023), 8 vom: 06. Feb., Seite 851-878 (DE-627)254630952 (DE-600)1462149-6 1435-926X nnns volume:86 year:2023 number:8 day:06 month:02 pages:851-878 https://dx.doi.org/10.1007/s00184-023-00895-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 86 2023 8 06 02 851-878 |
allfieldsGer |
10.1007/s00184-023-00895-4 doi (DE-627)SPR053094832 (SPR)s00184-023-00895-4-e DE-627 ger DE-627 rakwb eng Canu, Stéphane verfasserin (orcid)0000-0002-7602-4557 aut Data based loss estimation of the mean of a spherical distribution with a residual vector 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form %$1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) %$ where %$\varvec{\theta }%$ and %$\sigma %$ are both unknown, we consider general estimators %$ \varphi (X,\Vert U\Vert ^2) %$ of %$\varvec{\theta }%$ under two losses: the usual quadratic loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2%$ and the data-based loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2%$. Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator %$\delta _0(X,\Vert U\Vert ^2)%$ with a general alternative loss estimator %$\delta (X,\Vert U\Vert ^2)%$. Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between %$\delta (X,\Vert U\Vert ^2)%$ and %$\delta _0(X,\Vert U\Vert ^2)%$, which gives rise to a sufficient domination condition of %$\delta (X,\Vert U\Vert ^2)%$ over %$\delta _0(X,\Vert U\Vert ^2)%$. Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used. Data based loss (dpeaa)DE-He213 Loss estimation (dpeaa)DE-He213 Spherically symmetric distributions (dpeaa)DE-He213 Stein type identity (dpeaa)DE-He213 Fourdrinier, Dominique aut Enthalten in Metrika Berlin : Springer, 1958 86(2023), 8 vom: 06. Feb., Seite 851-878 (DE-627)254630952 (DE-600)1462149-6 1435-926X nnns volume:86 year:2023 number:8 day:06 month:02 pages:851-878 https://dx.doi.org/10.1007/s00184-023-00895-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 86 2023 8 06 02 851-878 |
allfieldsSound |
10.1007/s00184-023-00895-4 doi (DE-627)SPR053094832 (SPR)s00184-023-00895-4-e DE-627 ger DE-627 rakwb eng Canu, Stéphane verfasserin (orcid)0000-0002-7602-4557 aut Data based loss estimation of the mean of a spherical distribution with a residual vector 2023 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form %$1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) %$ where %$\varvec{\theta }%$ and %$\sigma %$ are both unknown, we consider general estimators %$ \varphi (X,\Vert U\Vert ^2) %$ of %$\varvec{\theta }%$ under two losses: the usual quadratic loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2%$ and the data-based loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2%$. Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator %$\delta _0(X,\Vert U\Vert ^2)%$ with a general alternative loss estimator %$\delta (X,\Vert U\Vert ^2)%$. Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between %$\delta (X,\Vert U\Vert ^2)%$ and %$\delta _0(X,\Vert U\Vert ^2)%$, which gives rise to a sufficient domination condition of %$\delta (X,\Vert U\Vert ^2)%$ over %$\delta _0(X,\Vert U\Vert ^2)%$. Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used. Data based loss (dpeaa)DE-He213 Loss estimation (dpeaa)DE-He213 Spherically symmetric distributions (dpeaa)DE-He213 Stein type identity (dpeaa)DE-He213 Fourdrinier, Dominique aut Enthalten in Metrika Berlin : Springer, 1958 86(2023), 8 vom: 06. Feb., Seite 851-878 (DE-627)254630952 (DE-600)1462149-6 1435-926X nnns volume:86 year:2023 number:8 day:06 month:02 pages:851-878 https://dx.doi.org/10.1007/s00184-023-00895-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 86 2023 8 06 02 851-878 |
language |
English |
source |
Enthalten in Metrika 86(2023), 8 vom: 06. Feb., Seite 851-878 volume:86 year:2023 number:8 day:06 month:02 pages:851-878 |
sourceStr |
Enthalten in Metrika 86(2023), 8 vom: 06. Feb., Seite 851-878 volume:86 year:2023 number:8 day:06 month:02 pages:851-878 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Data based loss Loss estimation Spherically symmetric distributions Stein type identity |
isfreeaccess_bool |
false |
container_title |
Metrika |
authorswithroles_txt_mv |
Canu, Stéphane @@aut@@ Fourdrinier, Dominique @@aut@@ |
publishDateDaySort_date |
2023-02-06T00:00:00Z |
hierarchy_top_id |
254630952 |
id |
SPR053094832 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053094832</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230917064619.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230917s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00184-023-00895-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053094832</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00184-023-00895-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Canu, Stéphane</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7602-4557</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data based loss estimation of the mean of a spherical distribution with a residual vector</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form %$1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) %$ where %$\varvec{\theta }%$ and %$\sigma %$ are both unknown, we consider general estimators %$ \varphi (X,\Vert U\Vert ^2) %$ of %$\varvec{\theta }%$ under two losses: the usual quadratic loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2%$ and the data-based loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2%$. Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator %$\delta _0(X,\Vert U\Vert ^2)%$ with a general alternative loss estimator %$\delta (X,\Vert U\Vert ^2)%$. Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between %$\delta (X,\Vert U\Vert ^2)%$ and %$\delta _0(X,\Vert U\Vert ^2)%$, which gives rise to a sufficient domination condition of %$\delta (X,\Vert U\Vert ^2)%$ over %$\delta _0(X,\Vert U\Vert ^2)%$. Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data based loss</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loss estimation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherically symmetric distributions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stein type identity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fourdrinier, Dominique</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metrika</subfield><subfield code="d">Berlin : Springer, 1958</subfield><subfield code="g">86(2023), 8 vom: 06. Feb., Seite 851-878</subfield><subfield code="w">(DE-627)254630952</subfield><subfield code="w">(DE-600)1462149-6</subfield><subfield code="x">1435-926X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8</subfield><subfield code="g">day:06</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:851-878</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00184-023-00895-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">2023</subfield><subfield code="e">8</subfield><subfield code="b">06</subfield><subfield code="c">02</subfield><subfield code="h">851-878</subfield></datafield></record></collection>
|
author |
Canu, Stéphane |
spellingShingle |
Canu, Stéphane misc Data based loss misc Loss estimation misc Spherically symmetric distributions misc Stein type identity Data based loss estimation of the mean of a spherical distribution with a residual vector |
authorStr |
Canu, Stéphane |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254630952 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1435-926X |
topic_title |
Data based loss estimation of the mean of a spherical distribution with a residual vector Data based loss (dpeaa)DE-He213 Loss estimation (dpeaa)DE-He213 Spherically symmetric distributions (dpeaa)DE-He213 Stein type identity (dpeaa)DE-He213 |
topic |
misc Data based loss misc Loss estimation misc Spherically symmetric distributions misc Stein type identity |
topic_unstemmed |
misc Data based loss misc Loss estimation misc Spherically symmetric distributions misc Stein type identity |
topic_browse |
misc Data based loss misc Loss estimation misc Spherically symmetric distributions misc Stein type identity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Metrika |
hierarchy_parent_id |
254630952 |
hierarchy_top_title |
Metrika |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254630952 (DE-600)1462149-6 |
title |
Data based loss estimation of the mean of a spherical distribution with a residual vector |
ctrlnum |
(DE-627)SPR053094832 (SPR)s00184-023-00895-4-e |
title_full |
Data based loss estimation of the mean of a spherical distribution with a residual vector |
author_sort |
Canu, Stéphane |
journal |
Metrika |
journalStr |
Metrika |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
txt |
container_start_page |
851 |
author_browse |
Canu, Stéphane Fourdrinier, Dominique |
container_volume |
86 |
format_se |
Elektronische Aufsätze |
author-letter |
Canu, Stéphane |
doi_str_mv |
10.1007/s00184-023-00895-4 |
normlink |
(ORCID)0000-0002-7602-4557 |
normlink_prefix_str_mv |
(orcid)0000-0002-7602-4557 |
title_sort |
data based loss estimation of the mean of a spherical distribution with a residual vector |
title_auth |
Data based loss estimation of the mean of a spherical distribution with a residual vector |
abstract |
Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form %$1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) %$ where %$\varvec{\theta }%$ and %$\sigma %$ are both unknown, we consider general estimators %$ \varphi (X,\Vert U\Vert ^2) %$ of %$\varvec{\theta }%$ under two losses: the usual quadratic loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2%$ and the data-based loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2%$. Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator %$\delta _0(X,\Vert U\Vert ^2)%$ with a general alternative loss estimator %$\delta (X,\Vert U\Vert ^2)%$. Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between %$\delta (X,\Vert U\Vert ^2)%$ and %$\delta _0(X,\Vert U\Vert ^2)%$, which gives rise to a sufficient domination condition of %$\delta (X,\Vert U\Vert ^2)%$ over %$\delta _0(X,\Vert U\Vert ^2)%$. Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form %$1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) %$ where %$\varvec{\theta }%$ and %$\sigma %$ are both unknown, we consider general estimators %$ \varphi (X,\Vert U\Vert ^2) %$ of %$\varvec{\theta }%$ under two losses: the usual quadratic loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2%$ and the data-based loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2%$. Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator %$\delta _0(X,\Vert U\Vert ^2)%$ with a general alternative loss estimator %$\delta (X,\Vert U\Vert ^2)%$. Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between %$\delta (X,\Vert U\Vert ^2)%$ and %$\delta _0(X,\Vert U\Vert ^2)%$, which gives rise to a sufficient domination condition of %$\delta (X,\Vert U\Vert ^2)%$ over %$\delta _0(X,\Vert U\Vert ^2)%$. Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form %$1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) %$ where %$\varvec{\theta }%$ and %$\sigma %$ are both unknown, we consider general estimators %$ \varphi (X,\Vert U\Vert ^2) %$ of %$\varvec{\theta }%$ under two losses: the usual quadratic loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2%$ and the data-based loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2%$. Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator %$\delta _0(X,\Vert U\Vert ^2)%$ with a general alternative loss estimator %$\delta (X,\Vert U\Vert ^2)%$. Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between %$\delta (X,\Vert U\Vert ^2)%$ and %$\delta _0(X,\Vert U\Vert ^2)%$, which gives rise to a sufficient domination condition of %$\delta (X,\Vert U\Vert ^2)%$ over %$\delta _0(X,\Vert U\Vert ^2)%$. Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
8 |
title_short |
Data based loss estimation of the mean of a spherical distribution with a residual vector |
url |
https://dx.doi.org/10.1007/s00184-023-00895-4 |
remote_bool |
true |
author2 |
Fourdrinier, Dominique |
author2Str |
Fourdrinier, Dominique |
ppnlink |
254630952 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00184-023-00895-4 |
up_date |
2024-07-03T17:01:54.681Z |
_version_ |
1803578103237181440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">SPR053094832</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230917064619.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230917s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00184-023-00895-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR053094832</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00184-023-00895-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Canu, Stéphane</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7602-4557</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data based loss estimation of the mean of a spherical distribution with a residual vector</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the canonical setting of the general linear model, we are concerned with estimating the loss of a point estimator when sampling from a spherically symmetric distribution. More precisely, from an observable (X, U) in %${\mathbb {R}}^p \times {\mathbb {R}}^k%$ having a density of the form %$1 / \sigma ^{p+k} \, f \! \left( \big ( \Vert {\textbf{x}}- \varvec{\theta }\Vert ^2 + \Vert {\textbf{u}}\Vert ^2 / \sigma ^2 \big ) \right) %$ where %$\varvec{\theta }%$ and %$\sigma %$ are both unknown, we consider general estimators %$ \varphi (X,\Vert U\Vert ^2) %$ of %$\varvec{\theta }%$ under two losses: the usual quadratic loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2%$ and the data-based loss %$\Vert \varphi (X,\Vert U\Vert ^2) - \varvec{\theta }\Vert ^2 / \Vert U\Vert ^2%$. Then, for each loss, we compare, through a squared error risk, their unbiased loss estimator %$\delta _0(X,\Vert U\Vert ^2)%$ with a general alternative loss estimator %$\delta (X,\Vert U\Vert ^2)%$. Thanks to the new Stein type identity in Fourdrinier and Strawderman (Metrika 78(4):461–484, 2015), we provide an unbiased estimator of the risk difference between %$\delta (X,\Vert U\Vert ^2)%$ and %$\delta _0(X,\Vert U\Vert ^2)%$, which gives rise to a sufficient domination condition of %$\delta (X,\Vert U\Vert ^2)%$ over %$\delta _0(X,\Vert U\Vert ^2)%$. Minimax estimators of Baranchik form illustrate the theory. It is found that the distributional assumptions and dimensional conditions on the residual vector U are weaker when the databased loss is used.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data based loss</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loss estimation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherically symmetric distributions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stein type identity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fourdrinier, Dominique</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metrika</subfield><subfield code="d">Berlin : Springer, 1958</subfield><subfield code="g">86(2023), 8 vom: 06. Feb., Seite 851-878</subfield><subfield code="w">(DE-627)254630952</subfield><subfield code="w">(DE-600)1462149-6</subfield><subfield code="x">1435-926X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:2023</subfield><subfield code="g">number:8</subfield><subfield code="g">day:06</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:851-878</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00184-023-00895-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">2023</subfield><subfield code="e">8</subfield><subfield code="b">06</subfield><subfield code="c">02</subfield><subfield code="h">851-878</subfield></datafield></record></collection>
|
score |
7.401787 |